
Paramiko
Release

Oct 15, 2021

Contents

1 API documentation 3
1.1 Core SSH protocol classes . 3
1.2 Authentication & keys . 31
1.3 Other primary functions . 47
1.4 Miscellany . 75

Python Module Index 81

Index 83

i

ii

Paramiko, Release

This site covers Paramiko’s usage & API documentation. For basic info on what Paramiko is, including its public
changelog & how the project is maintained, please see the main project website.

Contents 1

http://paramiko.org

Paramiko, Release

2 Contents

CHAPTER 1

API documentation

The high-level client API starts with creation of an SSHClient object. For more direct control, pass a socket (or
socket-like object) to a Transport, and use start_server or start_client to negotiate with the remote
host as either a server or client.

As a client, you are responsible for authenticating using a password or private key, and checking the server’s host
key. (Key signature and verification is done by paramiko, but you will need to provide private keys and check that the
content of a public key matches what you expected to see.)

As a server, you are responsible for deciding which users, passwords, and keys to allow, and what kind of channels to
allow.

Once you have finished, either side may request flow-controlled channels to the other side, which are Python objects
that act like sockets, but send and receive data over the encrypted session.

For details, please see the following tables of contents (which are organized by area of interest.)

1.1 Core SSH protocol classes

1.1.1 Channel

Abstraction for an SSH2 channel.

class paramiko.channel.Channel(chanid)
A secure tunnel across an SSH Transport. A Channel is meant to behave like a socket, and has an API that
should be indistinguishable from the Python socket API.

Because SSH2 has a windowing kind of flow control, if you stop reading data from a Channel and its buffer
fills up, the server will be unable to send you any more data until you read some of it. (This won’t affect other
channels on the same transport – all channels on a single transport are flow-controlled independently.) Similarly,
if the server isn’t reading data you send, calls to send may block, unless you set a timeout. This is exactly like
a normal network socket, so it shouldn’t be too surprising.

Instances of this class may be used as context managers.

3

Paramiko, Release

__init__(chanid)
Create a new channel. The channel is not associated with any particular session or Transport until the
Transport attaches it. Normally you would only call this method from the constructor of a subclass of
Channel.

Parameters chanid (int) – the ID of this channel, as passed by an existing Transport.

__repr__()
Return a string representation of this object, for debugging.

active = None
Whether the connection is presently active

chanid = None
Channel ID

close()
Close the channel. All future read/write operations on the channel will fail. The remote end will receive
no more data (after queued data is flushed). Channels are automatically closed when their Transport is
closed or when they are garbage collected.

closed = None
Whether the connection has been closed

exec_command(command)
Execute a command on the server. If the server allows it, the channel will then be directly connected to the
stdin, stdout, and stderr of the command being executed.

When the command finishes executing, the channel will be closed and can’t be reused. You must open a
new channel if you wish to execute another command.

Parameters command (str) – a shell command to execute.

Raises SSHException – if the request was rejected or the channel was closed

exit_status_ready()
Return true if the remote process has exited and returned an exit status. You may use this to poll the process
status if you don’t want to block in recv_exit_status. Note that the server may not return an exit
status in some cases (like bad servers).

Returns True if recv_exit_status will return immediately, else False.

New in version 1.7.3.

fileno()
Returns an OS-level file descriptor which can be used for polling, but but not for reading or writing. This
is primarily to allow Python’s select module to work.

The first time fileno is called on a channel, a pipe is created to simulate real OS-level file descriptor
(FD) behavior. Because of this, two OS-level FDs are created, which will use up FDs faster than normal.
(You won’t notice this effect unless you have hundreds of channels open at the same time.)

Returns an OS-level file descriptor (int)

Warning: This method causes channel reads to be slightly less efficient.

get_id()
Return the int ID # for this channel.

4 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int

Paramiko, Release

The channel ID is unique across a Transport and usually a small number. It’s also the number passed
to ServerInterface.check_channel_request when determining whether to accept a channel
request in server mode.

get_name()
Get the name of this channel that was previously set by set_name.

get_pty(term=’vt100’, width=80, height=24, width_pixels=0, height_pixels=0)
Request a pseudo-terminal from the server. This is usually used right after creating a client channel,
to ask the server to provide some basic terminal semantics for a shell invoked with invoke_shell.
It isn’t necessary (or desirable) to call this method if you’re going to execute a single command with
exec_command.

Parameters

• term (str) – the terminal type to emulate (for example, 'vt100')

• width (int) – width (in characters) of the terminal screen

• height (int) – height (in characters) of the terminal screen

• width_pixels (int) – width (in pixels) of the terminal screen

• height_pixels (int) – height (in pixels) of the terminal screen

Raises SSHException – if the request was rejected or the channel was closed

get_transport()
Return the Transport associated with this channel.

getpeername()
Return the address of the remote side of this Channel, if possible.

This simply wraps Transport.getpeername, used to provide enough of a socket-like interface to
allow asyncore to work. (asyncore likes to call 'getpeername'.)

gettimeout()
Returns the timeout in seconds (as a float) associated with socket operations, or None if no timeout is set.
This reflects the last call to setblocking or settimeout.

invoke_shell()
Request an interactive shell session on this channel. If the server allows it, the channel will then be directly
connected to the stdin, stdout, and stderr of the shell.

Normally you would call get_pty before this, in which case the shell will operate through the pty, and
the channel will be connected to the stdin and stdout of the pty.

When the shell exits, the channel will be closed and can’t be reused. You must open a new channel if you
wish to open another shell.

Raises SSHException – if the request was rejected or the channel was closed

invoke_subsystem(subsystem)
Request a subsystem on the server (for example, sftp). If the server allows it, the channel will then be
directly connected to the requested subsystem.

When the subsystem finishes, the channel will be closed and can’t be reused.

Parameters subsystem (str) – name of the subsystem being requested.

Raises SSHException – if the request was rejected or the channel was closed

makefile(*params)
Return a file-like object associated with this channel. The optional mode and bufsize arguments are
interpreted the same way as by the built-in file() function in Python.

1.1. Core SSH protocol classes 5

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

Returns ChannelFile object which can be used for Python file I/O.

makefile_stderr(*params)
Return a file-like object associated with this channel’s stderr stream. Only channels using
exec_command or invoke_shell without a pty will ever have data on the stderr stream.

The optional mode and bufsize arguments are interpreted the same way as by the built-in file()
function in Python. For a client, it only makes sense to open this file for reading. For a server, it only
makes sense to open this file for writing.

Returns ChannelFile object which can be used for Python file I/O.

New in version 1.1.

recv(nbytes)
Receive data from the channel. The return value is a string representing the data received. The maximum
amount of data to be received at once is specified by nbytes. If a string of length zero is returned, the
channel stream has closed.

Parameters nbytes (int) – maximum number of bytes to read.

Returns received data, as a str/bytes.

Raises socket.timeout – if no data is ready before the timeout set by settimeout.

recv_exit_status()
Return the exit status from the process on the server. This is mostly useful for retrieving the results of
an exec_command. If the command hasn’t finished yet, this method will wait until it does, or until the
channel is closed. If no exit status is provided by the server, -1 is returned.

Warning: In some situations, receiving remote output larger than the current Transport or ses-
sion’s window_size (e.g. that set by the default_window_size kwarg for Transport.
__init__) will cause recv_exit_status to hang indefinitely if it is called prior to a sufficiently
large Channel.recv (or if there are no threads calling Channel.recv in the background).

In these cases, ensuring that recv_exit_status is called after Channel.recv (or, again, using
threads) can avoid the hang.

Returns the exit code (as an int) of the process on the server.

New in version 1.2.

recv_ready()
Returns true if data is buffered and ready to be read from this channel. A False result does not mean that
the channel has closed; it means you may need to wait before more data arrives.

Returns True if a recv call on this channel would immediately return at least one byte;
False otherwise.

recv_stderr(nbytes)
Receive data from the channel’s stderr stream. Only channels using exec_command or
invoke_shell without a pty will ever have data on the stderr stream. The return value is a string rep-
resenting the data received. The maximum amount of data to be received at once is specified by nbytes.
If a string of length zero is returned, the channel stream has closed.

Parameters nbytes (int) – maximum number of bytes to read.

Returns received data as a str

Raises socket.timeout – if no data is ready before the timeout set by settimeout.

6 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/socket.html#socket.timeout
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/socket.html#socket.timeout

Paramiko, Release

New in version 1.1.

recv_stderr_ready()
Returns true if data is buffered and ready to be read from this channel’s stderr stream. Only channels using
exec_command or invoke_shell without a pty will ever have data on the stderr stream.

Returns True if a recv_stderr call on this channel would immediately return at least one
byte; False otherwise.

New in version 1.1.

remote_chanid = None
Remote channel ID

request_forward_agent(handler)
Request for a forward SSH Agent on this channel. This is only valid for an ssh-agent from OpenSSH !!!

Parameters handler – a required callable handler to use for incoming SSH Agent connections

Returns True if we are ok, else False (at that time we always return ok)

Raises SSHException in case of channel problem.

request_x11(screen_number=0, auth_protocol=None, auth_cookie=None, sin-
gle_connection=False, handler=None)

Request an x11 session on this channel. If the server allows it, further x11 requests can be made from the
server to the client, when an x11 application is run in a shell session.

From RFC 4254:

It is RECOMMENDED that the 'x11 authentication cookie' that is
sent be a fake, random cookie, and that the cookie be checked and
replaced by the real cookie when a connection request is received.

If you omit the auth_cookie, a new secure random 128-bit value will be generated, used, and returned.
You will need to use this value to verify incoming x11 requests and replace them with the actual local x11
cookie (which requires some knowledge of the x11 protocol).

If a handler is passed in, the handler is called from another thread whenever a new x11 connection arrives.
The default handler queues up incoming x11 connections, which may be retrieved using Transport.
accept. The handler’s calling signature is:

handler(channel: Channel, (address: str, port: int))

Parameters

• screen_number (int) – the x11 screen number (0, 10, etc.)

• auth_protocol (str) – the name of the X11 authentication method used; if none is
given, "MIT-MAGIC-COOKIE-1" is used

• auth_cookie (str) – hexadecimal string containing the x11 auth cookie; if none is
given, a secure random 128-bit value is generated

• single_connection (bool) – if True, only a single x11 connection will be for-
warded (by default, any number of x11 connections can arrive over this session)

• handler – an optional callable handler to use for incoming X11 connections

Returns the auth_cookie used

1.1. Core SSH protocol classes 7

https://tools.ietf.org/html/rfc4254.html
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool

Paramiko, Release

resize_pty(width=80, height=24, width_pixels=0, height_pixels=0)
Resize the pseudo-terminal. This can be used to change the width and height of the terminal emulation
created in a previous get_pty call.

Parameters

• width (int) – new width (in characters) of the terminal screen

• height (int) – new height (in characters) of the terminal screen

• width_pixels (int) – new width (in pixels) of the terminal screen

• height_pixels (int) – new height (in pixels) of the terminal screen

Raises SSHException – if the request was rejected or the channel was closed

send(s)
Send data to the channel. Returns the number of bytes sent, or 0 if the channel stream is closed. Applica-
tions are responsible for checking that all data has been sent: if only some of the data was transmitted, the
application needs to attempt delivery of the remaining data.

Parameters s (str) – data to send

Returns number of bytes actually sent, as an int

Raises socket.timeout – if no data could be sent before the timeout set by settimeout.

send_exit_status(status)
Send the exit status of an executed command to the client. (This really only makes sense in server mode.)
Many clients expect to get some sort of status code back from an executed command after it completes.

Parameters status (int) – the exit code of the process

New in version 1.2.

send_ready()
Returns true if data can be written to this channel without blocking. This means the channel is either closed
(so any write attempt would return immediately) or there is at least one byte of space in the outbound
buffer. If there is at least one byte of space in the outbound buffer, a send call will succeed immediately
and return the number of bytes actually written.

Returns True if a send call on this channel would immediately succeed or fail

send_stderr(s)
Send data to the channel on the “stderr” stream. This is normally only used by servers to send output from
shell commands – clients won’t use this. Returns the number of bytes sent, or 0 if the channel stream is
closed. Applications are responsible for checking that all data has been sent: if only some of the data was
transmitted, the application needs to attempt delivery of the remaining data.

Parameters s (str) – data to send.

Returns number of bytes actually sent, as an int.

Raises socket.timeout – if no data could be sent before the timeout set by settimeout.

New in version 1.1.

sendall(s)
Send data to the channel, without allowing partial results. Unlike send, this method continues to send
data from the given string until either all data has been sent or an error occurs. Nothing is returned.

Parameters s (str) – data to send.

Raises

• socket.timeout – if sending stalled for longer than the timeout set by settimeout.

8 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/socket.html#socket.timeout
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/socket.html#socket.timeout
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/socket.html#socket.timeout

Paramiko, Release

• socket.error – if an error occurred before the entire string was sent.

Note: If the channel is closed while only part of the data has been sent, there is no way to determine how
much data (if any) was sent. This is irritating, but identically follows Python’s API.

sendall_stderr(s)
Send data to the channel’s “stderr” stream, without allowing partial results. Unlike send_stderr, this
method continues to send data from the given string until all data has been sent or an error occurs. Nothing
is returned.

Parameters s (str) – data to send to the client as “stderr” output.

Raises

• socket.timeout – if sending stalled for longer than the timeout set by settimeout.

• socket.error – if an error occurred before the entire string was sent.

New in version 1.1.

set_combine_stderr(combine)
Set whether stderr should be combined into stdout on this channel. The default is False, but in some
cases it may be convenient to have both streams combined.

If this is False, and exec_command is called (or invoke_shell with no pty), output to stderr
will not show up through the recv and recv_ready calls. You will have to use recv_stderr and
recv_stderr_ready to get stderr output.

If this is True, data will never show up via recv_stderr or recv_stderr_ready .

Parameters combine (bool) – True if stderr output should be combined into stdout on this
channel.

Returns the previous setting (a bool).

New in version 1.1.

set_environment_variable(name, value)
Set the value of an environment variable.

Warning: The server may reject this request depending on its AcceptEnv setting; such rejections
will fail silently (which is common client practice for this particular request type). Make sure you
understand your server’s configuration before using!

Parameters

• name (str) – name of the environment variable

• value (str) – value of the environment variable

Raises SSHException – if the request was rejected or the channel was closed

set_name(name)
Set a name for this channel. Currently it’s only used to set the name of the channel in logfile entries. The
name can be fetched with the get_name method.

Parameters name (str) – new channel name

1.1. Core SSH protocol classes 9

https://docs.python.org/2.7/library/socket.html#socket.error
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/socket.html#socket.timeout
https://docs.python.org/2.7/library/socket.html#socket.error
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

setblocking(blocking)
Set blocking or non-blocking mode of the channel: if blocking is 0, the channel is set to non-blocking
mode; otherwise it’s set to blocking mode. Initially all channels are in blocking mode.

In non-blocking mode, if a recv call doesn’t find any data, or if a send call can’t immediately dispose
of the data, an error exception is raised. In blocking mode, the calls block until they can proceed. An EOF
condition is considered “immediate data” for recv , so if the channel is closed in the read direction, it will
never block.

chan.setblocking(0) is equivalent to chan.settimeout(0); chan.setblocking(1) is
equivalent to chan.settimeout(None).

Parameters blocking (int) – 0 to set non-blocking mode; non-0 to set blocking mode.

settimeout(timeout)
Set a timeout on blocking read/write operations. The timeout argument can be a nonnegative float
expressing seconds, or None. If a float is given, subsequent channel read/write operations will raise a
timeout exception if the timeout period value has elapsed before the operation has completed. Setting a
timeout of None disables timeouts on socket operations.

chan.settimeout(0.0) is equivalent to chan.setblocking(0); chan.
settimeout(None) is equivalent to chan.setblocking(1).

Parameters timeout (float) – seconds to wait for a pending read/write operation before
raising socket.timeout, or None for no timeout.

shutdown(how)
Shut down one or both halves of the connection. If how is 0, further receives are disallowed. If how is 1,
further sends are disallowed. If how is 2, further sends and receives are disallowed. This closes the stream
in one or both directions.

Parameters how (int) –

0 (stop receiving), 1 (stop sending), or 2 (stop receiving and sending).

shutdown_read()
Shutdown the receiving side of this socket, closing the stream in the incoming direction. After this call, fu-
ture reads on this channel will fail instantly. This is a convenience method, equivalent to shutdown(0),
for people who don’t make it a habit to memorize unix constants from the 1970s.

New in version 1.2.

shutdown_write()
Shutdown the sending side of this socket, closing the stream in the outgoing direction. After this call, future
writes on this channel will fail instantly. This is a convenience method, equivalent to shutdown(1), for
people who don’t make it a habit to memorize unix constants from the 1970s.

New in version 1.2.

transport = None
Transport managing this channel

update_environment(environment)
Updates this channel’s remote shell environment.

Note: This operation is additive - i.e. the current environment is not reset before the given environment
variables are set.

10 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int

Paramiko, Release

Warning: Servers may silently reject some environment variables; see the warning in
set_environment_variable for details.

Parameters environment (dict) – a dictionary containing the name and respective values
to set

Raises SSHException – if any of the environment variables was rejected by the server or the
channel was closed

class paramiko.channel.ChannelFile(channel, mode=’r’, bufsize=-1)
A file-like wrapper around Channel. A ChannelFile is created by calling Channel.makefile.

Warning: To correctly emulate the file object created from a socket’s makefile method, a Channel
and its ChannelFile should be able to be closed or garbage-collected independently. Currently, closing
the ChannelFile does nothing but flush the buffer.

__repr__()
Returns a string representation of this object, for debugging.

paramiko.channel.open_only(func)
Decorator for Channel methods which performs an openness check.

Raises SSHException – If the wrapped method is called on an unopened Channel.

1.1.2 Client

SSH client & key policies

class paramiko.client.SSHClient
A high-level representation of a session with an SSH server. This class wraps Transport, Channel, and
SFTPClient to take care of most aspects of authenticating and opening channels. A typical use case is:

client = SSHClient()
client.load_system_host_keys()
client.connect('ssh.example.com')
stdin, stdout, stderr = client.exec_command('ls -l')

You may pass in explicit overrides for authentication and server host key checking. The default mechanism is
to try to use local key files or an SSH agent (if one is running).

Instances of this class may be used as context managers.

New in version 1.6.

__init__()
Create a new SSHClient.

load_system_host_keys(filename=None)
Load host keys from a system (read-only) file. Host keys read with this method will not be saved back by
save_host_keys.

This method can be called multiple times. Each new set of host keys will be merged with the existing set
(new replacing old if there are conflicts).

1.1. Core SSH protocol classes 11

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/socket.html#socket.socket.makefile

Paramiko, Release

If filename is left as None, an attempt will be made to read keys from the user’s local “known hosts”
file, as used by OpenSSH, and no exception will be raised if the file can’t be read. This is probably only
useful on posix.

Parameters filename (str) – the filename to read, or None

Raises IOError – if a filename was provided and the file could not be read

load_host_keys(filename)
Load host keys from a local host-key file. Host keys read with this method will be checked after keys
loaded via load_system_host_keys, but will be saved back by save_host_keys (so they can
be modified). The missing host key policy AutoAddPolicy adds keys to this set and saves them, when
connecting to a previously-unknown server.

This method can be called multiple times. Each new set of host keys will be merged with the existing set
(new replacing old if there are conflicts). When automatically saving, the last hostname is used.

Parameters filename (str) – the filename to read

Raises IOError – if the filename could not be read

save_host_keys(filename)
Save the host keys back to a file. Only the host keys loaded with load_host_keys (plus any added
directly) will be saved – not any host keys loaded with load_system_host_keys.

Parameters filename (str) – the filename to save to

Raises IOError – if the file could not be written

get_host_keys()
Get the local HostKeys object. This can be used to examine the local host keys or change them.

Returns the local host keys as a HostKeys object.

set_log_channel(name)
Set the channel for logging. The default is "paramiko.transport" but it can be set to anything you
want.

Parameters name (str) – new channel name for logging

set_missing_host_key_policy(policy)
Set policy to use when connecting to servers without a known host key.

Specifically:

• A policy is a “policy class” (or instance thereof), namely some subclass of
MissingHostKeyPolicy such as RejectPolicy (the default), AutoAddPolicy ,
WarningPolicy , or a user-created subclass.

• A host key is known when it appears in the client object’s cached host keys structures (those manip-
ulated by load_system_host_keys and/or load_host_keys).

Parameters policy (MissingHostKeyPolicy) – the policy to use when receiving a host
key from a previously-unknown server

connect(hostname, port=22, username=None, password=None, pkey=None, key_filename=None,
timeout=None, allow_agent=True, look_for_keys=True, compress=False, sock=None,
gss_auth=False, gss_kex=False, gss_deleg_creds=True, gss_host=None, ban-
ner_timeout=None, auth_timeout=None, gss_trust_dns=True, passphrase=None)

Connect to an SSH server and authenticate to it. The server’s host key is checked against the sys-
tem host keys (see load_system_host_keys) and any local host keys (load_host_keys). If
the server’s hostname is not found in either set of host keys, the missing host key policy is used

12 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

(see set_missing_host_key_policy). The default policy is to reject the key and raise an
SSHException.

Authentication is attempted in the following order of priority:

• The pkey or key_filename passed in (if any)

– key_filename may contain OpenSSH public certificate paths as well as regular private-key
paths; when files ending in -cert.pub are found, they are assumed to match a private key,
and both components will be loaded. (The private key itself does not need to be listed in
key_filename for this to occur - just the certificate.)

• Any key we can find through an SSH agent

• Any “id_rsa”, “id_dsa” or “id_ecdsa” key discoverable in ~/.ssh/

– When OpenSSH-style public certificates exist that match an existing such private key (so e.g. one
has id_rsa and id_rsa-cert.pub) the certificate will be loaded alongside the private key
and used for authentication.

• Plain username/password auth, if a password was given

If a private key requires a password to unlock it, and a password is passed in, that password will be used
to attempt to unlock the key.

Parameters

• hostname (str) – the server to connect to

• port (int) – the server port to connect to

• username (str) – the username to authenticate as (defaults to the current local user-
name)

• password (str) – Used for password authentication; is also used for private key de-
cryption if passphrase is not given.

• passphrase (str) – Used for decrypting private keys.

• pkey (PKey) – an optional private key to use for authentication

• key_filename (str) – the filename, or list of filenames, of optional private key(s)
and/or certs to try for authentication

• timeout (float) – an optional timeout (in seconds) for the TCP connect

• allow_agent (bool) – set to False to disable connecting to the SSH agent

• look_for_keys (bool) – set to False to disable searching for discoverable private key
files in ~/.ssh/

• compress (bool) – set to True to turn on compression

• sock (socket) – an open socket or socket-like object (such as a Channel) to use for
communication to the target host

• gss_auth (bool) – True if you want to use GSS-API authentication

• gss_kex (bool) – Perform GSS-API Key Exchange and user authentication

• gss_deleg_creds (bool) – Delegate GSS-API client credentials or not

• gss_host (str) – The targets name in the kerberos database. default: hostname

• gss_trust_dns (bool) – Indicates whether or not the DNS is trusted to securely
canonicalize the name of the host being connected to (default True).

1.1. Core SSH protocol classes 13

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/socket.html#module-socket
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool

Paramiko, Release

• banner_timeout (float) – an optional timeout (in seconds) to wait for the SSH
banner to be presented.

• auth_timeout (float) – an optional timeout (in seconds) to wait for an authentication
response.

Raises BadHostKeyException – if the server’s host key could not be verified

Raises AuthenticationException – if authentication failed

Raises SSHException – if there was any other error connecting or establishing an SSH ses-
sion

Raises socket.error – if a socket error occurred while connecting

Changed in version 1.15: Added the banner_timeout, gss_auth, gss_kex, gss_deleg_creds
and gss_host arguments.

Changed in version 2.3: Added the gss_trust_dns argument.

Changed in version 2.4: Added the passphrase argument.

close()
Close this SSHClient and its underlying Transport.

This should be called anytime you are done using the client object.

Warning: Paramiko registers garbage collection hooks that will try to automatically close connections
for you, but this is not presently reliable. Failure to explicitly close your client after use may lead to
end-of-process hangs!

exec_command(command, bufsize=-1, timeout=None, get_pty=False, environment=None)
Execute a command on the SSH server. A new Channel is opened and the requested command is ex-
ecuted. The command’s input and output streams are returned as Python file-like objects representing
stdin, stdout, and stderr.

Parameters

• command (str) – the command to execute

• bufsize (int) – interpreted the same way as by the built-in file() function in Python

• timeout (int) – set command’s channel timeout. See Channel.settimeout

• get_pty (bool) – Request a pseudo-terminal from the server (default False). See
Channel.get_pty

• environment (dict) – a dict of shell environment variables, to be merged into the
default environment that the remote command executes within.

Warning: Servers may silently reject some environment variables; see the warning in
Channel.set_environment_variable for details.

Returns the stdin, stdout, and stderr of the executing command, as a 3-tuple

Raises SSHException – if the server fails to execute the command

Changed in version 1.10: Added the get_pty kwarg.

14 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/socket.html#socket.error
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/stdtypes.html#dict

Paramiko, Release

invoke_shell(term=’vt100’, width=80, height=24, width_pixels=0, height_pixels=0, environ-
ment=None)

Start an interactive shell session on the SSH server. A new Channel is opened and connected to a
pseudo-terminal using the requested terminal type and size.

Parameters

• term (str) – the terminal type to emulate (for example, "vt100")

• width (int) – the width (in characters) of the terminal window

• height (int) – the height (in characters) of the terminal window

• width_pixels (int) – the width (in pixels) of the terminal window

• height_pixels (int) – the height (in pixels) of the terminal window

• environment (dict) – the command’s environment

Returns a new Channel connected to the remote shell

Raises SSHException – if the server fails to invoke a shell

open_sftp()
Open an SFTP session on the SSH server.

Returns a new SFTPClient session object

get_transport()
Return the underlying Transport object for this SSH connection. This can be used to perform lower-
level tasks, like opening specific kinds of channels.

Returns the Transport for this connection

class paramiko.client.MissingHostKeyPolicy
Interface for defining the policy that SSHClient should use when the SSH server’s hostname is not in either
the system host keys or the application’s keys. Pre-made classes implement policies for automatically adding
the key to the application’s HostKeys object (AutoAddPolicy), and for automatically rejecting the key
(RejectPolicy).

This function may be used to ask the user to verify the key, for example.

missing_host_key(client, hostname, key)
Called when an SSHClient receives a server key for a server that isn’t in either the system or local
HostKeys object. To accept the key, simply return. To reject, raised an exception (which will be passed
to the calling application).

__weakref__
list of weak references to the object (if defined)

class paramiko.client.AutoAddPolicy
Policy for automatically adding the hostname and new host key to the local HostKeys object, and saving it.
This is used by SSHClient.

class paramiko.client.RejectPolicy
Policy for automatically rejecting the unknown hostname & key. This is used by SSHClient.

class paramiko.client.WarningPolicy
Policy for logging a Python-style warning for an unknown host key, but accepting it. This is used by
SSHClient.

1.1. Core SSH protocol classes 15

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/stdtypes.html#dict

Paramiko, Release

1.1.3 Message

Implementation of an SSH2 “message”.

class paramiko.message.Message(content=None)
An SSH2 message is a stream of bytes that encodes some combination of strings, integers, bools, and infinite-
precision integers (known in Python as longs). This class builds or breaks down such a byte stream.

Normally you don’t need to deal with anything this low-level, but it’s exposed for people implementing custom
extensions, or features that paramiko doesn’t support yet.

__init__(content=None)
Create a new SSH2 message.

Parameters content (str) – the byte stream to use as the message content (passed in only
when decomposing a message).

__repr__()
Returns a string representation of this object, for debugging.

__str__()
Return the byte stream content of this message, as a string/bytes obj.

__weakref__
list of weak references to the object (if defined)

add(*seq)
Add a sequence of items to the stream. The values are encoded based on their type: str, int, bool, list, or
long.

Warning: Longs are encoded non-deterministically. Don’t use this method.

Parameters seq – the sequence of items

add_adaptive_int(n)
Add an integer to the stream.

Parameters n (int) – integer to add

add_boolean(b)
Add a boolean value to the stream.

Parameters b (bool) – boolean value to add

add_byte(b)
Write a single byte to the stream, without any formatting.

Parameters b (str) – byte to add

add_bytes(b)
Write bytes to the stream, without any formatting.

Parameters b (str) – bytes to add

add_int(n)
Add an integer to the stream.

Parameters n (int) – integer to add

add_int64(n)
Add a 64-bit int to the stream.

16 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int

Paramiko, Release

Parameters n (long) – long int to add

add_list(l)
Add a list of strings to the stream. They are encoded identically to a single string of values separated by
commas. (Yes, really, that’s how SSH2 does it.)

Parameters l – list of strings to add

add_mpint(z)
Add a long int to the stream, encoded as an infinite-precision integer. This method only works on positive
numbers.

Parameters z (long) – long int to add

add_string(s)
Add a string to the stream.

Parameters s (str) – string to add

asbytes()
Return the byte stream content of this Message, as bytes.

get_adaptive_int()
Fetch an int from the stream.

Returns a 32-bit unsigned int.

get_binary()
Fetch a string from the stream. This could be a byte string and may contain unprintable characters. (It’s
not unheard of for a string to contain another byte-stream Message.)

get_boolean()
Fetch a boolean from the stream.

get_byte()
Return the next byte of the message, without decomposing it. This is equivalent to get_bytes(1).

Returns the next (str) byte of the message, or '\' if there aren’t any bytes remaining.

get_bytes(n)
Return the next n bytes of the message (as a str), without decomposing into an int, decoded string, etc.
Just the raw bytes are returned. Returns a string of n zero bytes if there weren’t n bytes remaining in the
message.

get_int()
Fetch an int from the stream.

get_int64()
Fetch a 64-bit int from the stream.

Returns a 64-bit unsigned integer (long).

get_list()
Fetch a list of strings from the stream.

These are trivially encoded as comma-separated values in a string.

get_mpint()
Fetch a long int (mpint) from the stream.

Returns an arbitrary-length integer (long).

get_remainder()
Return the bytes (as a str) of this message that haven’t already been parsed and returned.

1.1. Core SSH protocol classes 17

https://docs.python.org/2.7/library/functions.html#long
https://docs.python.org/2.7/library/functions.html#long
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#long
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#long
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

get_so_far()
Returns the str bytes of this message that have been parsed and returned. The string passed into a
message’s constructor can be regenerated by concatenating get_so_far and get_remainder.

get_string()
Fetch a str from the stream. This could be a byte string and may contain unprintable characters. (It’s not
unheard of for a string to contain another byte-stream message.)

get_text()
Fetch a Unicode string from the stream.

rewind()
Rewind the message to the beginning as if no items had been parsed out of it yet.

1.1.4 Packetizer

Packet handling

exception paramiko.packet.NeedRekeyException
Exception indicating a rekey is needed.

__weakref__
list of weak references to the object (if defined)

class paramiko.packet.Packetizer(socket)
Implementation of the base SSH packet protocol.

__weakref__
list of weak references to the object (if defined)

complete_handshake()
Tells Packetizer that the handshake has completed.

handshake_timed_out()
Checks if the handshake has timed out.

If start_handshake wasn’t called before the call to this function, the return value will always be
False. If the handshake completed before a timeout was reached, the return value will be False

Returns handshake time out status, as a bool

need_rekey()
Returns True if a new set of keys needs to be negotiated. This will be triggered during a packet read or
write, so it should be checked after every read or write, or at least after every few.

read_all(n, check_rekey=False)
Read as close to N bytes as possible, blocking as long as necessary.

Parameters n (int) – number of bytes to read

Returns the data read, as a str

Raises EOFError – if the socket was closed before all the bytes could be read

read_message()
Only one thread should ever be in this function (no other locking is done).

Raises SSHException – if the packet is mangled

Raises NeedRekeyException – if the transport should rekey

18 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#False
https://docs.python.org/2.7/library/constants.html#False
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

readline(timeout)
Read a line from the socket. We assume no data is pending after the line, so it’s okay to attempt large
reads.

send_message(data)
Write a block of data using the current cipher, as an SSH block.

set_inbound_cipher(block_engine, block_size, mac_engine, mac_size, mac_key, etm=False)
Switch inbound data cipher. :param etm: Set encrypt-then-mac from OpenSSH

set_keepalive(interval, callback)
Turn on/off the callback keepalive. If interval seconds pass with no data read from or written to the
socket, the callback will be executed and the timer will be reset.

set_log(log)
Set the Python log object to use for logging.

set_outbound_cipher(block_engine, block_size, mac_engine, mac_size, mac_key, sdctr=False,
etm=False)

Switch outbound data cipher. :param etm: Set encrypt-then-mac from OpenSSH

start_handshake(timeout)
Tells Packetizer that the handshake process started. Starts a book keeping timer that can signal a
timeout in the handshake process.

Parameters timeout (float) – amount of seconds to wait before timing out

1.1.5 Transport

Core protocol implementation

class paramiko.transport.Transport(sock, default_window_size=2097152, de-
fault_max_packet_size=32768, gss_kex=False,
gss_deleg_creds=True)

An SSH Transport attaches to a stream (usually a socket), negotiates an encrypted session, authenticates, and
then creates stream tunnels, called channels, across the session. Multiple channels can be multiplexed across
a single session (and often are, in the case of port forwardings).

Instances of this class may be used as context managers.

__init__(sock, default_window_size=2097152, default_max_packet_size=32768, gss_kex=False,
gss_deleg_creds=True)

Create a new SSH session over an existing socket, or socket-like object. This only creates the Transport
object; it doesn’t begin the SSH session yet. Use connect or start_client to begin a client session,
or start_server to begin a server session.

If the object is not actually a socket, it must have the following methods:

• send(str): Writes from 1 to len(str) bytes, and returns an int representing the number of bytes
written. Returns 0 or raises EOFError if the stream has been closed.

• recv(int): Reads from 1 to int bytes and returns them as a string. Returns 0 or raises EOFError
if the stream has been closed.

• close(): Closes the socket.

• settimeout(n): Sets a (float) timeout on I/O operations.

For ease of use, you may also pass in an address (as a tuple) or a host string as the sock argument. (A
host string is a hostname with an optional port (separated by ":") which will be converted into a tuple
of (hostname, port).) A socket will be connected to this address and used for communication.
Exceptions from the socket call may be thrown in this case.

1.1. Core SSH protocol classes 19

https://docs.python.org/2.7/library/functions.html#float

Paramiko, Release

Note: Modifying the the window and packet sizes might have adverse effects on your channels created
from this transport. The default values are the same as in the OpenSSH code base and have been battle
tested.

Parameters

• sock (socket) – a socket or socket-like object to create the session over.

• default_window_size (int) – sets the default window size on the transport. (de-
faults to 2097152)

• default_max_packet_size (int) – sets the default max packet size on the trans-
port. (defaults to 32768)

• gss_kex (bool) – Whether to enable GSSAPI key exchange when GSSAPI is in play.
Default: False.

• gss_deleg_creds (bool) – Whether to enable GSSAPI credential delegation when
GSSAPI is in play. Default: True.

Changed in version 1.15: Added the default_window_size and default_max_packet_size
arguments.

Changed in version 1.15: Added the gss_kex and gss_deleg_creds kwargs.

__repr__()
Returns a string representation of this object, for debugging.

atfork()
Terminate this Transport without closing the session. On posix systems, if a Transport is open during
process forking, both parent and child will share the underlying socket, but only one process can use
the connection (without corrupting the session). Use this method to clean up a Transport object without
disrupting the other process.

New in version 1.5.3.

get_security_options()
Return a SecurityOptions object which can be used to tweak the encryption algorithms this transport
will permit (for encryption, digest/hash operations, public keys, and key exchanges) and the order of
preference for them.

set_gss_host(gss_host, trust_dns=True, gssapi_requested=True)
Normalize/canonicalize self.gss_host depending on various factors.

Parameters

• gss_host (str) – The explicitly requested GSS-oriented hostname to connect to (i.e.
what the host’s name is in the Kerberos database.) Defaults to self.hostname (which
will be the ‘real’ target hostname and/or host portion of given socket object.)

• trust_dns (bool) – Indicates whether or not DNS is trusted; if true, DNS will be
used to canonicalize the GSS hostname (which again will either be gss_host or the
transport’s default hostname.) (Defaults to True due to backwards compatibility.)

• gssapi_requested (bool) – Whether GSSAPI key exchange or authentication was
even requested. If not, this is a no-op and nothing happens (and self.gss_host is not
set.) (Defaults to True due to backwards compatibility.)

Returns None.

20 Chapter 1. API documentation

https://docs.python.org/2.7/library/socket.html#module-socket
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool

Paramiko, Release

start_client(event=None, timeout=None)
Negotiate a new SSH2 session as a client. This is the first step after creating a new Transport. A
separate thread is created for protocol negotiation.

If an event is passed in, this method returns immediately. When negotiation is done (successful or not), the
given Event will be triggered. On failure, is_active will return False.

(Since 1.4) If event is None, this method will not return until negotiation is done. On success, the
method returns normally. Otherwise an SSHException is raised.

After a successful negotiation, you will usually want to authenticate, calling auth_password or
auth_publickey .

Note: connect is a simpler method for connecting as a client.

Note: After calling this method (or start_server or connect), you should no longer directly read
from or write to the original socket object.

Parameters

• event (threading.Event) – an event to trigger when negotiation is complete (op-
tional)

• timeout (float) – a timeout, in seconds, for SSH2 session negotiation (optional)

Raises SSHException – if negotiation fails (and no event was passed in)

start_server(event=None, server=None)
Negotiate a new SSH2 session as a server. This is the first step after creating a new Transport and
setting up your server host key(s). A separate thread is created for protocol negotiation.

If an event is passed in, this method returns immediately. When negotiation is done (successful or not), the
given Event will be triggered. On failure, is_active will return False.

(Since 1.4) If event is None, this method will not return until negotiation is done. On success, the
method returns normally. Otherwise an SSHException is raised.

After a successful negotiation, the client will need to authenticate. Override the meth-
ods get_allowed_auths, check_auth_none, check_auth_password, and
check_auth_publickey in the given server object to control the authentication process.

After a successful authentication, the client should request to open a channel. Override
check_channel_request in the given server object to allow channels to be opened.

Note: After calling this method (or start_client or connect), you should no longer directly read
from or write to the original socket object.

Parameters

• event (threading.Event) – an event to trigger when negotiation is complete.

• server (ServerInterface) – an object used to perform authentication and create
channels

Raises SSHException – if negotiation fails (and no event was passed in)

1.1. Core SSH protocol classes 21

https://docs.python.org/2.7/library/threading.html#threading.Event
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/threading.html#threading.Event

Paramiko, Release

add_server_key(key)
Add a host key to the list of keys used for server mode. When behaving as a server, the host key is used
to sign certain packets during the SSH2 negotiation, so that the client can trust that we are who we say we
are. Because this is used for signing, the key must contain private key info, not just the public half. Only
one key of each type (RSA or DSS) is kept.

Parameters key (PKey) – the host key to add, usually an RSAKey or DSSKey .

get_server_key()
Return the active host key, in server mode. After negotiating with the client, this method will return the
negotiated host key. If only one type of host key was set with add_server_key , that’s the only key
that will ever be returned. But in cases where you have set more than one type of host key (for example,
an RSA key and a DSS key), the key type will be negotiated by the client, and this method will return the
key of the type agreed on. If the host key has not been negotiated yet, None is returned. In client mode,
the behavior is undefined.

Returns host key (PKey) of the type negotiated by the client, or None.

static load_server_moduli(filename=None)
(optional) Load a file of prime moduli for use in doing group-exchange key negotiation in server mode.
It’s a rather obscure option and can be safely ignored.

In server mode, the remote client may request “group-exchange” key negotiation, which asks the server
to send a random prime number that fits certain criteria. These primes are pretty difficult to compute, so
they can’t be generated on demand. But many systems contain a file of suitable primes (usually named
something like /etc/ssh/moduli). If you call load_server_moduli and it returns True, then
this file of primes has been loaded and we will support “group-exchange” in server mode. Otherwise server
mode will just claim that it doesn’t support that method of key negotiation.

Parameters filename (str) – optional path to the moduli file, if you happen to know that
it’s not in a standard location.

Returns True if a moduli file was successfully loaded; False otherwise.

Note: This has no effect when used in client mode.

close()
Close this session, and any open channels that are tied to it.

get_remote_server_key()
Return the host key of the server (in client mode).

Note: Previously this call returned a tuple of (key type, key string). You can get the same
effect by calling PKey.get_name for the key type, and str(key) for the key string.

Raises SSHException – if no session is currently active.

Returns public key (PKey) of the remote server

is_active()
Return true if this session is active (open).

Returns True if the session is still active (open); False if the session is closed

open_session(window_size=None, max_packet_size=None, timeout=None)
Request a new channel to the server, of type "session". This is just an alias for calling
open_channel with an argument of "session".

22 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

Note: Modifying the the window and packet sizes might have adverse effects on the session created. The
default values are the same as in the OpenSSH code base and have been battle tested.

Parameters

• window_size (int) – optional window size for this session.

• max_packet_size (int) – optional max packet size for this session.

Returns a new Channel

Raises SSHException – if the request is rejected or the session ends prematurely

Changed in version 1.13.4/1.14.3/1.15.3: Added the timeout argument.

Changed in version 1.15: Added the window_size and max_packet_size arguments.

open_x11_channel(src_addr=None)
Request a new channel to the client, of type "x11". This is just an alias for open_channel('x11',
src_addr=src_addr).

Parameters src_addr (tuple) – the source address ((str, int)) of the x11 server (port
is the x11 port, ie. 6010)

Returns a new Channel

Raises SSHException – if the request is rejected or the session ends prematurely

open_forward_agent_channel()
Request a new channel to the client, of type "auth-agent@openssh.com".

This is just an alias for open_channel('auth-agent@openssh.com').

Returns a new Channel

Raises SSHException – if the request is rejected or the session ends prematurely

open_forwarded_tcpip_channel(src_addr, dest_addr)
Request a new channel back to the client, of type forwarded-tcpip.

This is used after a client has requested port forwarding, for sending incoming connections back to the
client.

Parameters

• src_addr – originator’s address

• dest_addr – local (server) connected address

open_channel(kind, dest_addr=None, src_addr=None, window_size=None, max_packet_size=None,
timeout=None)

Request a new channel to the server. Channels are socket-like objects used for the actual transfer of
data across the session. You may only request a channel after negotiating encryption (using connect or
start_client) and authenticating.

Note: Modifying the the window and packet sizes might have adverse effects on the channel created. The
default values are the same as in the OpenSSH code base and have been battle tested.

Parameters

1.1. Core SSH protocol classes 23

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#tuple

Paramiko, Release

• kind (str) – the kind of channel requested (usually "session",
"forwarded-tcpip", "direct-tcpip", or "x11")

• dest_addr (tuple) – the destination address (address + port tuple) of this port for-
warding, if kind is "forwarded-tcpip" or "direct-tcpip" (ignored for other
channel types)

• src_addr – the source address of this port forwarding, if kind is
"forwarded-tcpip", "direct-tcpip", or "x11"

• window_size (int) – optional window size for this session.

• max_packet_size (int) – optional max packet size for this session.

• timeout (float) – optional timeout opening a channel, default 3600s (1h)

Returns a new Channel on success

Raises SSHException – if the request is rejected, the session ends prematurely or there is a
timeout openning a channel

Changed in version 1.15: Added the window_size and max_packet_size arguments.

request_port_forward(address, port, handler=None)
Ask the server to forward TCP connections from a listening port on the server, across this SSH session.

If a handler is given, that handler is called from a different thread whenever a forwarded connection arrives.
The handler parameters are:

handler(
channel,
(origin_addr, origin_port),
(server_addr, server_port),

)

where server_addr and server_port are the address and port that the server was listening on.

If no handler is set, the default behavior is to send new incoming forwarded connections into the accept
queue, to be picked up via accept.

Parameters

• address (str) – the address to bind when forwarding

• port (int) – the port to forward, or 0 to ask the server to allocate any port

• handler (callable) – optional handler for incoming forwarded connections, of the
form func(Channel, (str, int), (str, int)).

Returns the port number (int) allocated by the server

Raises SSHException – if the server refused the TCP forward request

cancel_port_forward(address, port)
Ask the server to cancel a previous port-forwarding request. No more connections to the given address &
port will be forwarded across this ssh connection.

Parameters

• address (str) – the address to stop forwarding

• port (int) – the port to stop forwarding

24 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#tuple
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#callable
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int

Paramiko, Release

open_sftp_client()
Create an SFTP client channel from an open transport. On success, an SFTP session will be opened with
the remote host, and a new SFTPClient object will be returned.

Returns a new SFTPClient referring to an sftp session (channel) across this transport

send_ignore(byte_count=None)
Send a junk packet across the encrypted link. This is sometimes used to add “noise” to a connection
to confuse would-be attackers. It can also be used as a keep-alive for long lived connections traversing
firewalls.

Parameters byte_count (int) – the number of random bytes to send in the payload of the
ignored packet – defaults to a random number from 10 to 41.

renegotiate_keys()
Force this session to switch to new keys. Normally this is done automatically after the session hits a
certain number of packets or bytes sent or received, but this method gives you the option of forcing new
keys whenever you want. Negotiating new keys causes a pause in traffic both ways as the two sides swap
keys and do computations. This method returns when the session has switched to new keys.

Raises SSHException – if the key renegotiation failed (which causes the session to end)

set_keepalive(interval)
Turn on/off keepalive packets (default is off). If this is set, after interval seconds without sending any
data over the connection, a “keepalive” packet will be sent (and ignored by the remote host). This can be
useful to keep connections alive over a NAT, for example.

Parameters interval (int) – seconds to wait before sending a keepalive packet (or 0 to
disable keepalives).

global_request(kind, data=None, wait=True)
Make a global request to the remote host. These are normally extensions to the SSH2 protocol.

Parameters

• kind (str) – name of the request.

• data (tuple) – an optional tuple containing additional data to attach to the request.

• wait (bool) – True if this method should not return until a response is received; False
otherwise.

Returns a Message containing possible additional data if the request was successful (or an
empty Message if wait was False); None if the request was denied.

accept(timeout=None)
Return the next channel opened by the client over this transport, in server mode. If no channel is opened
before the given timeout, None is returned.

Parameters timeout (int) – seconds to wait for a channel, or None to wait forever

Returns a new Channel opened by the client

connect(hostkey=None, username=”, password=None, pkey=None, gss_host=None, gss_auth=False,
gss_kex=False, gss_deleg_creds=True, gss_trust_dns=True)

Negotiate an SSH2 session, and optionally verify the server’s host key and authenticate using a password or
private key. This is a shortcut for start_client, get_remote_server_key , and Transport.
auth_password or Transport.auth_publickey . Use those methods if you want more control.

You can use this method immediately after creating a Transport to negotiate encryption with a server. If
it fails, an exception will be thrown. On success, the method will return cleanly, and an encrypted session
exists. You may immediately call open_channel or open_session to get a Channel object, which
is used for data transfer.

1.1. Core SSH protocol classes 25

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#tuple
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int

Paramiko, Release

Note: If you fail to supply a password or private key, this method may succeed, but a subsequent
open_channel or open_session call may fail because you haven’t authenticated yet.

Parameters

• hostkey (PKey) – the host key expected from the server, or None if you don’t want to
do host key verification.

• username (str) – the username to authenticate as.

• password (str) – a password to use for authentication, if you want to use password
authentication; otherwise None.

• pkey (PKey) – a private key to use for authentication, if you want to use private key
authentication; otherwise None.

• gss_host (str) – The target’s name in the kerberos database. Default: hostname

• gss_auth (bool) – True if you want to use GSS-API authentication.

• gss_kex (bool) – Perform GSS-API Key Exchange and user authentication.

• gss_deleg_creds (bool) – Whether to delegate GSS-API client credentials.

• gss_trust_dns – Indicates whether or not the DNS is trusted to securely canonicalize
the name of the host being connected to (default True).

Raises SSHException – if the SSH2 negotiation fails, the host key supplied by the server is
incorrect, or authentication fails.

Changed in version 2.3: Added the gss_trust_dns argument.

get_exception()
Return any exception that happened during the last server request. This can be used to fetch more specific
error information after using calls like start_client. The exception (if any) is cleared after this call.

Returns an exception, or None if there is no stored exception.

New in version 1.1.

set_subsystem_handler(name, handler, *larg, **kwarg)
Set the handler class for a subsystem in server mode. If a request for this subsystem is made on an open ssh
channel later, this handler will be constructed and called – see SubsystemHandler for more detailed
documentation.

Any extra parameters (including keyword arguments) are saved and passed to the SubsystemHandler
constructor later.

Parameters

• name (str) – name of the subsystem.

• handler – subclass of SubsystemHandler that handles this subsystem.

is_authenticated()
Return true if this session is active and authenticated.

Returns True if the session is still open and has been authenticated successfully; False if authen-
tication failed and/or the session is closed.

26 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

get_username()
Return the username this connection is authenticated for. If the session is not authenticated (or authentica-
tion failed), this method returns None.

Returns username that was authenticated (a str), or None.

get_banner()
Return the banner supplied by the server upon connect. If no banner is supplied, this method returns None.

Returns server supplied banner (str), or None.

New in version 1.13.

auth_none(username)
Try to authenticate to the server using no authentication at all. This will almost always fail. It may
be useful for determining the list of authentication types supported by the server, by catching the
BadAuthenticationType exception raised.

Parameters username (str) – the username to authenticate as

Returns list of auth types permissible for the next stage of authentication (normally empty)

Raises BadAuthenticationType – if “none” authentication isn’t allowed by the server for
this user

Raises SSHException – if the authentication failed due to a network error

New in version 1.5.

auth_password(username, password, event=None, fallback=True)
Authenticate to the server using a password. The username and password are sent over an encrypted link.

If an event is passed in, this method will return immediately, and the event will be triggered once au-
thentication succeeds or fails. On success, is_authenticated will return True. On failure, you may
use get_exception to get more detailed error information.

Since 1.1, if no event is passed, this method will block until the authentication succeeds or fails. On failure,
an exception is raised. Otherwise, the method simply returns.

Since 1.5, if no event is passed and fallback is True (the default), if the server doesn’t support plain
password authentication but does support so-called “keyboard-interactive” mode, an attempt will be made
to authenticate using this interactive mode. If it fails, the normal exception will be thrown as if the attempt
had never been made. This is useful for some recent Gentoo and Debian distributions, which turn off plain
password authentication in a misguided belief that interactive authentication is “more secure”. (It’s not.)

If the server requires multi-step authentication (which is very rare), this method will return a list of auth
types permissible for the next step. Otherwise, in the normal case, an empty list is returned.

Parameters

• username (str) – the username to authenticate as

• password (basestring) – the password to authenticate with

• event (threading.Event) – an event to trigger when the authentication attempt is
complete (whether it was successful or not)

• fallback (bool) – True if an attempt at an automated “interactive” password auth
should be made if the server doesn’t support normal password auth

Returns list of auth types permissible for the next stage of authentication (normally empty)

Raises BadAuthenticationType – if password authentication isn’t allowed by the server
for this user (and no event was passed in)

1.1. Core SSH protocol classes 27

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#basestring
https://docs.python.org/2.7/library/threading.html#threading.Event
https://docs.python.org/2.7/library/functions.html#bool

Paramiko, Release

Raises AuthenticationException – if the authentication failed (and no event was passed
in)

Raises SSHException – if there was a network error

auth_publickey(username, key, event=None)
Authenticate to the server using a private key. The key is used to sign data from the server, so it must
include the private part.

If an event is passed in, this method will return immediately, and the event will be triggered once au-
thentication succeeds or fails. On success, is_authenticated will return True. On failure, you may
use get_exception to get more detailed error information.

Since 1.1, if no event is passed, this method will block until the authentication succeeds or fails. On failure,
an exception is raised. Otherwise, the method simply returns.

If the server requires multi-step authentication (which is very rare), this method will return a list of auth
types permissible for the next step. Otherwise, in the normal case, an empty list is returned.

Parameters

• username (str) – the username to authenticate as

• key (PKey) – the private key to authenticate with

• event (threading.Event) – an event to trigger when the authentication attempt is
complete (whether it was successful or not)

Returns list of auth types permissible for the next stage of authentication (normally empty)

Raises BadAuthenticationType – if public-key authentication isn’t allowed by the server
for this user (and no event was passed in)

Raises AuthenticationException – if the authentication failed (and no event was passed
in)

Raises SSHException – if there was a network error

auth_interactive(username, handler, submethods=”)
Authenticate to the server interactively. A handler is used to answer arbitrary questions from the server.
On many servers, this is just a dumb wrapper around PAM.

This method will block until the authentication succeeds or fails, peroidically calling the handler asyn-
chronously to get answers to authentication questions. The handler may be called more than once if the
server continues to ask questions.

The handler is expected to be a callable that will handle calls of the form: handler(title,
instructions, prompt_list). The title is meant to be a dialog-window title, and the
instructions are user instructions (both are strings). prompt_list will be a list of prompts, each
prompt being a tuple of (str, bool). The string is the prompt and the boolean indicates whether the
user text should be echoed.

A sample call would thus be: handler('title', 'instructions', [('Password:',
False)]).

The handler should return a list or tuple of answers to the server’s questions.

If the server requires multi-step authentication (which is very rare), this method will return a list of auth
types permissible for the next step. Otherwise, in the normal case, an empty list is returned.

Parameters

• username (str) – the username to authenticate as

• handler (callable) – a handler for responding to server questions

28 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/threading.html#threading.Event
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#callable

Paramiko, Release

• submethods (str) – a string list of desired submethods (optional)

Returns list of auth types permissible for the next stage of authentication (normally empty).

Raises BadAuthenticationType – if public-key authentication isn’t allowed by the server
for this user

Raises AuthenticationException – if the authentication failed

Raises SSHException – if there was a network error

New in version 1.5.

auth_interactive_dumb(username, handler=None, submethods=”)
Autenticate to the server interactively but dumber. Just print the prompt and / or instructions to stdout and
send back the response. This is good for situations where partial auth is achieved by key and then the user
has to enter a 2fac token.

auth_gssapi_with_mic(username, gss_host, gss_deleg_creds)
Authenticate to the Server using GSS-API / SSPI.

Parameters

• username (str) – The username to authenticate as

• gss_host (str) – The target host

• gss_deleg_creds (bool) – Delegate credentials or not

Returns list of auth types permissible for the next stage of authentication (normally empty)

Raises BadAuthenticationType – if gssapi-with-mic isn’t allowed by the server (and no
event was passed in)

Raises AuthenticationException – if the authentication failed (and no event was passed
in)

Raises SSHException – if there was a network error

auth_gssapi_keyex(username)
Authenticate to the server with GSS-API/SSPI if GSS-API kex is in use.

Parameters username (str) – The username to authenticate as.

Returns a list of auth types permissible for the next stage of authentication (normally empty)

Raises BadAuthenticationType – if GSS-API Key Exchange was not performed (and no
event was passed in)

Raises AuthenticationException – if the authentication failed (and no event was passed
in)

Raises SSHException – if there was a network error

set_log_channel(name)
Set the channel for this transport’s logging. The default is "paramiko.transport" but it can be set
to anything you want. (See the logging module for more info.) SSH Channels will log to a sub-channel
of the one specified.

Parameters name (str) – new channel name for logging

New in version 1.1.

get_log_channel()
Return the channel name used for this transport’s logging.

Returns channel name as a str

1.1. Core SSH protocol classes 29

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/logging.html#module-logging
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

New in version 1.2.

set_hexdump(hexdump)
Turn on/off logging a hex dump of protocol traffic at DEBUG level in the logs. Normally you would want
this off (which is the default), but if you are debugging something, it may be useful.

Parameters hexdump (bool) – True to log protocol traffix (in hex) to the log; False other-
wise.

get_hexdump()
Return True if the transport is currently logging hex dumps of protocol traffic.

Returns True if hex dumps are being logged, else False.

New in version 1.4.

use_compression(compress=True)
Turn on/off compression. This will only have an affect before starting the transport (ie before calling
connect, etc). By default, compression is off since it negatively affects interactive sessions.

Parameters compress (bool) – True to ask the remote client/server to compress traffic;
False to refuse compression

New in version 1.5.2.

getpeername()
Return the address of the remote side of this Transport, if possible.

This is effectively a wrapper around getpeername on the underlying socket. If the socket-like object
has no getpeername method, then ("unknown", 0) is returned.

Returns the address of the remote host, if known, as a (str, int) tuple.

class paramiko.transport.SecurityOptions(transport)
Simple object containing the security preferences of an ssh transport. These are tuples of acceptable ciphers,
digests, key types, and key exchange algorithms, listed in order of preference.

Changing the contents and/or order of these fields affects the underlying Transport (but only if you change
them before starting the session). If you try to add an algorithm that paramiko doesn’t recognize, ValueError
will be raised. If you try to assign something besides a tuple to one of the fields, TypeError will be raised.

__repr__()
Returns a string representation of this object, for debugging.

ciphers
Symmetric encryption ciphers

digests
Digest (one-way hash) algorithms

key_types
Public-key algorithms

kex
Key exchange algorithms

compression
Compression algorithms

30 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool

Paramiko, Release

1.2 Authentication & keys

1.2.1 SSH agents

SSH Agent interface

class paramiko.agent.Agent
Client interface for using private keys from an SSH agent running on the local machine. If an SSH agent is
running, this class can be used to connect to it and retrieve PKey objects which can be used when attempting to
authenticate to remote SSH servers.

Upon initialization, a session with the local machine’s SSH agent is opened, if one is running. If no agent is
running, initialization will succeed, but get_keys will return an empty tuple.

Raises SSHException – if an SSH agent is found, but speaks an incompatible protocol

close()
Close the SSH agent connection.

get_keys()
Return the list of keys available through the SSH agent, if any. If no SSH agent was running (or it couldn’t
be contacted), an empty list will be returned.

Returns a tuple of AgentKey objects representing keys available on the SSH agent

class paramiko.agent.AgentClientProxy(chanRemote)
Class proxying request as a client:

1. client ask for a request_forward_agent()

2. server creates a proxy and a fake SSH Agent

3. server ask for establishing a connection when needed, calling the forward_agent_handler at client side.

4. the forward_agent_handler launch a thread for connecting the remote fake agent and the local agent

5. Communication occurs . . .

close()
Close the current connection and terminate the agent Should be called manually

connect()
Method automatically called by AgentProxyThread.run.

class paramiko.agent.AgentKey(agent, blob)
Private key held in a local SSH agent. This type of key can be used for authenticating to a remote server
(signing). Most other key operations work as expected.

can_sign()
Return True if this key has the private part necessary for signing data.

from_private_key(file_obj, password=None)
Create a key object by reading a private key from a file (or file-like) object. If the private key is en-
crypted and password is not None, the given password will be used to decrypt the key (otherwise
PasswordRequiredException is thrown).

Parameters

• file_obj – the file-like object to read from

• password (str) – an optional password to use to decrypt the key, if it’s encrypted

Returns a new PKey based on the given private key

1.2. Authentication & keys 31

https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

Raises IOError – if there was an error reading the key

Raises PasswordRequiredException – if the private key file is encrypted, and
password is None

Raises SSHException – if the key file is invalid

from_private_key_file(filename, password=None)
Create a key object by reading a private key file. If the private key is encrypted and password is not
None, the given password will be used to decrypt the key (otherwise PasswordRequiredException
is thrown). Through the magic of Python, this factory method will exist in all subclasses of PKey (such as
RSAKey or DSSKey), but is useless on the abstract PKey class.

Parameters

• filename (str) – name of the file to read

• password (str) – an optional password to use to decrypt the key file, if it’s encrypted

Returns a new PKey based on the given private key

Raises IOError – if there was an error reading the file

Raises PasswordRequiredException – if the private key file is encrypted, and
password is None

Raises SSHException – if the key file is invalid

get_base64()
Return a base64 string containing the public part of this key. Nothing secret is revealed. This format is
compatible with that used to store public key files or recognized host keys.

Returns a base64 string containing the public part of the key.

get_bits()
Return the number of significant bits in this key. This is useful for judging the relative security of a key.

Returns bits in the key (as an int)

get_fingerprint()
Return an MD5 fingerprint of the public part of this key. Nothing secret is revealed.

Returns a 16-byte string (binary) of the MD5 fingerprint, in SSH format.

load_certificate(value)
Supplement the private key contents with data loaded from an OpenSSH public key (.pub) or certificate
(-cert.pub) file, a string containing such a file, or a Message object.

The .pub contents adds no real value, since the private key file includes sufficient information to derive
the public key info. For certificates, however, this can be used on the client side to offer authentication
requests to the server based on certificate instead of raw public key.

See: https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.certkeys

Note: very little effort is made to validate the certificate contents, that is for the server to decide if it is
good enough to authenticate successfully.

verify_ssh_sig(data, msg)
Given a blob of data, and an SSH message representing a signature of that data, verify that it was signed
with this key.

Parameters

• data (str) – the data that was signed.

• msg (Message) – an SSH signature message

32 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.certkeys
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

Returns True if the signature verifies correctly; False otherwise.

write_private_key(file_obj, password=None)
Write private key contents into a file (or file-like) object. If the password is not None, the key is encrypted
before writing.

Parameters

• file_obj – the file-like object to write into

• password (str) – an optional password to use to encrypt the key

Raises IOError – if there was an error writing to the file

Raises SSHException – if the key is invalid

write_private_key_file(filename, password=None)
Write private key contents into a file. If the password is not None, the key is encrypted before writing.

Parameters

• filename (str) – name of the file to write

• password (str) – an optional password to use to encrypt the key file

Raises IOError – if there was an error writing the file

Raises SSHException – if the key is invalid

class paramiko.agent.AgentLocalProxy(agent)
Class to be used when wanting to ask a local SSH Agent being asked from a remote fake agent (so use a unix
socket for ex.)

daemon
A boolean value indicating whether this thread is a daemon thread.

This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from
the creating thread; the main thread is not a daemon thread and therefore all threads created in the main
thread default to daemon = False.

The entire Python program exits when only daemon threads are left.

get_connection()
Return a pair of socket object and string address.

May block!

ident
Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the get_ident() function. Thread identifiers may be recycled when a thread
exits and another thread is created. The identifier is available even after the thread has exited.

isAlive()
Return whether the thread is alive.

This method is deprecated, use is_alive() instead.

is_alive()
Return whether the thread is alive.

This method returns True just before the run() method starts until just after the run() method terminates.
The module function enumerate() returns a list of all alive threads.

join(timeout=None)
Wait until the thread terminates.

1.2. Authentication & keys 33

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

This blocks the calling thread until the thread whose join() method is called terminates – either normally
or through an unhandled exception or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the thread is still alive, the join() call timed
out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock.
It is also an error to join() a thread before it has been started and attempts to do so raises the same exception.

name
A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The initial name is set by the construc-
tor.

start()
Start the thread’s activity.

It must be called at most once per thread object. It arranges for the object’s run() method to be invoked in
a separate thread of control.

This method will raise a RuntimeError if called more than once on the same thread object.

class paramiko.agent.AgentProxyThread(agent)
Class in charge of communication between two channels.

daemon
A boolean value indicating whether this thread is a daemon thread.

This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from
the creating thread; the main thread is not a daemon thread and therefore all threads created in the main
thread default to daemon = False.

The entire Python program exits when only daemon threads are left.

ident
Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the get_ident() function. Thread identifiers may be recycled when a thread
exits and another thread is created. The identifier is available even after the thread has exited.

isAlive()
Return whether the thread is alive.

This method is deprecated, use is_alive() instead.

is_alive()
Return whether the thread is alive.

This method returns True just before the run() method starts until just after the run() method terminates.
The module function enumerate() returns a list of all alive threads.

join(timeout=None)
Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is called terminates – either normally
or through an unhandled exception or until the optional timeout occurs.

34 Chapter 1. API documentation

Paramiko, Release

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the thread is still alive, the join() call timed
out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock.
It is also an error to join() a thread before it has been started and attempts to do so raises the same exception.

name
A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The initial name is set by the construc-
tor.

start()
Start the thread’s activity.

It must be called at most once per thread object. It arranges for the object’s run() method to be invoked in
a separate thread of control.

This method will raise a RuntimeError if called more than once on the same thread object.

class paramiko.agent.AgentRemoteProxy(agent, chan)
Class to be used when wanting to ask a remote SSH Agent

daemon
A boolean value indicating whether this thread is a daemon thread.

This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from
the creating thread; the main thread is not a daemon thread and therefore all threads created in the main
thread default to daemon = False.

The entire Python program exits when only daemon threads are left.

ident
Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the get_ident() function. Thread identifiers may be recycled when a thread
exits and another thread is created. The identifier is available even after the thread has exited.

isAlive()
Return whether the thread is alive.

This method is deprecated, use is_alive() instead.

is_alive()
Return whether the thread is alive.

This method returns True just before the run() method starts until just after the run() method terminates.
The module function enumerate() returns a list of all alive threads.

join(timeout=None)
Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is called terminates – either normally
or through an unhandled exception or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof). As join() always returns None, you must call

1.2. Authentication & keys 35

Paramiko, Release

is_alive() after join() to decide whether a timeout happened – if the thread is still alive, the join() call timed
out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock.
It is also an error to join() a thread before it has been started and attempts to do so raises the same exception.

name
A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The initial name is set by the construc-
tor.

start()
Start the thread’s activity.

It must be called at most once per thread object. It arranges for the object’s run() method to be invoked in
a separate thread of control.

This method will raise a RuntimeError if called more than once on the same thread object.

class paramiko.agent.AgentRequestHandler(chanClient)
Primary/default implementation of SSH agent forwarding functionality.

Simply instantiate this class, handing it a live command-executing session object, and it will handle forwarding
any local SSH agent processes it finds.

For example:

Connect
client = SSHClient()
client.connect(host, port, username)
Obtain session
session = client.get_transport().open_session()
Forward local agent
AgentRequestHandler(session)
Commands executed after this point will see the forwarded agent on
the remote end.
session.exec_command("git clone https://my.git.repository/")

class paramiko.agent.AgentServerProxy(t)

Parameters t (Transport) – Transport used for SSH Agent communication forwarding

Raises SSHException – mostly if we lost the agent

close()
Terminate the agent, clean the files, close connections Should be called manually

get_env()
Helper for the environnement under unix

Returns a dict containing the SSH_AUTH_SOCK environnement variables

get_keys()
Return the list of keys available through the SSH agent, if any. If no SSH agent was running (or it couldn’t
be contacted), an empty list will be returned.

Returns a tuple of AgentKey objects representing keys available on the SSH agent

36 Chapter 1. API documentation

Paramiko, Release

1.2.2 Host keys / known_hosts files

class paramiko.hostkeys.HostKeys(filename=None)
Representation of an OpenSSH-style “known hosts” file. Host keys can be read from one or more files, and then
individual hosts can be looked up to verify server keys during SSH negotiation.

A HostKeys object can be treated like a dict; any dict lookup is equivalent to calling lookup.

New in version 1.5.3.

__init__(filename=None)
Create a new HostKeys object, optionally loading keys from an OpenSSH style host-key file.

Parameters filename (str) – filename to load host keys from, or None

add(hostname, keytype, key)
Add a host key entry to the table. Any existing entry for a (hostname, keytype) pair will be re-
placed.

Parameters

• hostname (str) – the hostname (or IP) to add

• keytype (str) – key type ("ssh-rsa" or "ssh-dss")

• key (PKey) – the key to add

load(filename)
Read a file of known SSH host keys, in the format used by OpenSSH. This type of file unfortunately
doesn’t exist on Windows, but on posix, it will usually be stored in os.path.expanduser("~/.
ssh/known_hosts").

If this method is called multiple times, the host keys are merged, not cleared. So multiple calls to load
will just call add, replacing any existing entries and adding new ones.

Parameters filename (str) – name of the file to read host keys from

Raises IOError – if there was an error reading the file

save(filename)
Save host keys into a file, in the format used by OpenSSH. The order of keys in the file will be preserved
when possible (if these keys were loaded from a file originally). The single exception is that combined
lines will be split into individual key lines, which is arguably a bug.

Parameters filename (str) – name of the file to write

Raises IOError – if there was an error writing the file

New in version 1.6.1.

lookup(hostname)
Find a hostkey entry for a given hostname or IP. If no entry is found, None is returned. Otherwise a
dictionary of keytype to key is returned. The keytype will be either "ssh-rsa" or "ssh-dss".

Parameters hostname (str) – the hostname (or IP) to lookup

Returns dict of str -> PKey keys associated with this host (or None)

check(hostname, key)
Return True if the given key is associated with the given hostname in this dictionary.

Parameters

• hostname (str) – hostname (or IP) of the SSH server

• key (PKey) – the key to check

1.2. Authentication & keys 37

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

Returns True if the key is associated with the hostname; else False

clear()
Remove all host keys from the dictionary.

static hash_host(hostname, salt=None)
Return a “hashed” form of the hostname, as used by OpenSSH when storing hashed hostnames in the
known_hosts file.

Parameters

• hostname (str) – the hostname to hash

• salt (str) – optional salt to use when hashing (must be 20 bytes long)

Returns the hashed hostname as a str

__weakref__
list of weak references to the object (if defined)

class paramiko.hostkeys.HostKeyEntry(hostnames=None, key=None)
Representation of a line in an OpenSSH-style “known hosts” file.

classmethod from_line(line, lineno=None)
Parses the given line of text to find the names for the host, the type of key, and the key data. The line is
expected to be in the format used by the OpenSSH known_hosts file.

Lines are expected to not have leading or trailing whitespace. We don’t bother to check for comments or
empty lines. All of that should be taken care of before sending the line to us.

Parameters line (str) – a line from an OpenSSH known_hosts file

to_line()
Returns a string in OpenSSH known_hosts file format, or None if the object is not in a valid state. A
trailing newline is included.

__weakref__
list of weak references to the object (if defined)

1.2.3 Key handling

Parent key class

Common API for all public keys.

class paramiko.pkey.PKey(msg=None, data=None)
Base class for public keys.

__cmp__(other)
Compare this key to another. Returns 0 if this key is equivalent to the given key, or non-0 if they are differ-
ent. Only the public parts of the key are compared, so a public key will compare equal to its corresponding
private key.

Parameters other (PKey) – key to compare to.

__init__(msg=None, data=None)
Create a new instance of this public key type. If msg is given, the key’s public part(s) will be filled in from
the message. If data is given, the key’s public part(s) will be filled in from the string.

Parameters

• msg (Message) – an optional SSH Message containing a public key of this type.

38 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

• data (str) – an optional string containing a public key of this type

Raises SSHException – if a key cannot be created from the data or msg given, or no key
was passed in.

__weakref__
list of weak references to the object (if defined)

asbytes()
Return a string of an SSH Message made up of the public part(s) of this key. This string is suitable for
passing to __init__ to re-create the key object later.

can_sign()
Return True if this key has the private part necessary for signing data.

classmethod from_private_key(file_obj, password=None)
Create a key object by reading a private key from a file (or file-like) object. If the private key is en-
crypted and password is not None, the given password will be used to decrypt the key (otherwise
PasswordRequiredException is thrown).

Parameters

• file_obj – the file-like object to read from

• password (str) – an optional password to use to decrypt the key, if it’s encrypted

Returns a new PKey based on the given private key

Raises IOError – if there was an error reading the key

Raises PasswordRequiredException – if the private key file is encrypted, and
password is None

Raises SSHException – if the key file is invalid

classmethod from_private_key_file(filename, password=None)
Create a key object by reading a private key file. If the private key is encrypted and password is not
None, the given password will be used to decrypt the key (otherwise PasswordRequiredException
is thrown). Through the magic of Python, this factory method will exist in all subclasses of PKey (such as
RSAKey or DSSKey), but is useless on the abstract PKey class.

Parameters

• filename (str) – name of the file to read

• password (str) – an optional password to use to decrypt the key file, if it’s encrypted

Returns a new PKey based on the given private key

Raises IOError – if there was an error reading the file

Raises PasswordRequiredException – if the private key file is encrypted, and
password is None

Raises SSHException – if the key file is invalid

get_base64()
Return a base64 string containing the public part of this key. Nothing secret is revealed. This format is
compatible with that used to store public key files or recognized host keys.

Returns a base64 string containing the public part of the key.

get_bits()
Return the number of significant bits in this key. This is useful for judging the relative security of a key.

Returns bits in the key (as an int)

1.2. Authentication & keys 39

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int

Paramiko, Release

get_fingerprint()
Return an MD5 fingerprint of the public part of this key. Nothing secret is revealed.

Returns a 16-byte string (binary) of the MD5 fingerprint, in SSH format.

get_name()
Return the name of this private key implementation.

Returns name of this private key type, in SSH terminology, as a str (for example,
"ssh-rsa").

load_certificate(value)
Supplement the private key contents with data loaded from an OpenSSH public key (.pub) or certificate
(-cert.pub) file, a string containing such a file, or a Message object.

The .pub contents adds no real value, since the private key file includes sufficient information to derive
the public key info. For certificates, however, this can be used on the client side to offer authentication
requests to the server based on certificate instead of raw public key.

See: https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.certkeys

Note: very little effort is made to validate the certificate contents, that is for the server to decide if it is
good enough to authenticate successfully.

sign_ssh_data(data)
Sign a blob of data with this private key, and return a Message representing an SSH signature message.

Parameters data (str) – the data to sign.

Returns an SSH signature message.

verify_ssh_sig(data, msg)
Given a blob of data, and an SSH message representing a signature of that data, verify that it was signed
with this key.

Parameters

• data (str) – the data that was signed.

• msg (Message) – an SSH signature message

Returns True if the signature verifies correctly; False otherwise.

write_private_key(file_obj, password=None)
Write private key contents into a file (or file-like) object. If the password is not None, the key is encrypted
before writing.

Parameters

• file_obj – the file-like object to write into

• password (str) – an optional password to use to encrypt the key

Raises IOError – if there was an error writing to the file

Raises SSHException – if the key is invalid

write_private_key_file(filename, password=None)
Write private key contents into a file. If the password is not None, the key is encrypted before writing.

Parameters

• filename (str) – name of the file to write

• password (str) – an optional password to use to encrypt the key file

Raises IOError – if there was an error writing the file

40 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.certkeys
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

Raises SSHException – if the key is invalid

class paramiko.pkey.PublicBlob(type_, blob, comment=None)
OpenSSH plain public key or OpenSSH signed public key (certificate).

Tries to be as dumb as possible and barely cares about specific per-key-type data.

Note: Most of the time you’ll want to call from_file, from_string or from_message for useful
instantiation, the main constructor is basically “I should be using attrs for this.”

__init__(type_, blob, comment=None)
Create a new public blob of given type and contents.

Parameters

• type (str) – Type indicator, eg ssh-rsa.

• blob – The blob bytes themselves.

• comment (str) – A comment, if one was given (e.g. file-based.)

__weakref__
list of weak references to the object (if defined)

classmethod from_file(filename)
Create a public blob from a -cert.pub-style file on disk.

classmethod from_message(message)
Create a public blob from a network Message.

Specifically, a cert-bearing pubkey auth packet, because by definition OpenSSH-style certificates ‘are’
their own network representation.”

classmethod from_string(string)
Create a public blob from a -cert.pub-style string.

DSA (DSS)

DSS keys.

class paramiko.dsskey.DSSKey(msg=None, data=None, filename=None, password=None,
vals=None, file_obj=None)

Representation of a DSS key which can be used to sign an verify SSH2 data.

static generate(bits=1024, progress_func=None)
Generate a new private DSS key. This factory function can be used to generate a new host key or authen-
tication key.

Parameters

• bits (int) – number of bits the generated key should be.

• progress_func – Unused

Returns new DSSKey private key

RSA

RSA keys.

1.2. Authentication & keys 41

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int

Paramiko, Release

class paramiko.rsakey.RSAKey(msg=None, data=None, filename=None, password=None,
key=None, file_obj=None)

Representation of an RSA key which can be used to sign and verify SSH2 data.

static generate(bits, progress_func=None)
Generate a new private RSA key. This factory function can be used to generate a new host key or authen-
tication key.

Parameters

• bits (int) – number of bits the generated key should be.

• progress_func – Unused

Returns new RSAKey private key

ECDSA

ECDSA keys

class paramiko.ecdsakey.ECDSAKey(msg=None, data=None, filename=None, password=None,
vals=None, file_obj=None, validate_point=True)

Representation of an ECDSA key which can be used to sign and verify SSH2 data.

classmethod generate(curve=<cryptography.hazmat.primitives.asymmetric.ec.SECP256R1 ob-
ject>, progress_func=None, bits=None)

Generate a new private ECDSA key. This factory function can be used to generate a new host key or
authentication key.

Parameters progress_func – Not used for this type of key.

Returns A new private key (ECDSAKey) object

Ed25519

class paramiko.ed25519key.Ed25519Key(msg=None, data=None, filename=None, pass-
word=None, file_obj=None)

Representation of an Ed25519 key.

Note: Ed25519 key support was added to OpenSSH in version 6.5.

New in version 2.2.

Changed in version 2.3: Added a file_obj parameter to match other key classes.

1.2.4 GSS-API authentication

This module provides GSS-API / SSPI authentication as defined in RFC 4462.

Note: Credential delegation is not supported in server mode.

See also:

GSS-API key exchange

New in version 1.15.

42 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#int
https://ed25519.cr.yp.to/
https://tools.ietf.org/html/rfc4462.html

Paramiko, Release

paramiko.ssh_gss.GSS_EXCEPTIONS = ()
A tuple of the exception types used by the underlying GSSAPI implementation.

paramiko.ssh_gss.GSS_AUTH_AVAILABLE = False
A boolean constraint that indicates if GSS-API / SSPI is available.

paramiko.ssh_gss.GSSAuth(auth_method, gss_deleg_creds=True)
Provide SSH2 GSS-API / SSPI authentication.

Parameters

• auth_method (str) – The name of the SSH authentication mechanism (gssapi-with-mic
or gss-keyex)

• gss_deleg_creds (bool) – Delegate client credentials or not. We delegate credentials
by default.

Returns Either an _SSH_GSSAPI (Unix) object or an _SSH_SSPI (Windows) object

Raises ImportError – If no GSS-API / SSPI module could be imported.

See RFC 4462

Note Check for the available API and return either an _SSH_GSSAPI (MIT GSSAPI) object or
an _SSH_SSPI (MS SSPI) object. If you get python-gssapi working on Windows, python-
gssapi will be used and a _SSH_GSSAPI object will be returned. If there is no supported API
available, None will be returned.

class paramiko.ssh_gss._SSH_GSSAuth(auth_method, gss_deleg_creds)
Contains the shared variables and methods of _SSH_GSSAPI and _SSH_SSPI.

__init__(auth_method, gss_deleg_creds)

Parameters

• auth_method (str) – The name of the SSH authentication mechanism (gssapi-with-
mic or gss-keyex)

• gss_deleg_creds (bool) – Delegate client credentials or not

set_service(service)
This is just a setter to use a non default service. I added this method, because RFC 4462 doesn’t specify
“ssh-connection” as the only service value.

Parameters service (str) – The desired SSH service

set_username(username)
Setter for C{username}. If GSS-API Key Exchange is performed, the username is not set by
C{ssh_init_sec_context}.

Parameters username (str) – The name of the user who attempts to login

ssh_gss_oids(mode=’client’)
This method returns a single OID, because we only support the Kerberos V5 mechanism.

Parameters mode (str) – Client for client mode and server for server mode

Returns A byte sequence containing the number of supported OIDs, the length of the OID and
the actual OID encoded with DER

Note In server mode we just return the OID length and the DER encoded OID.

ssh_check_mech(desired_mech)
Check if the given OID is the Kerberos V5 OID (server mode).

Parameters desired_mech (str) – The desired GSS-API mechanism of the client

1.2. Authentication & keys 43

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
http://www.ietf.org/rfc/rfc4462.txt
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

Returns True if the given OID is supported, otherwise C{False}

__weakref__
list of weak references to the object (if defined)

class paramiko.ssh_gss._SSH_GSSAPI(auth_method, gss_deleg_creds)
Implementation of the GSS-API MIT Kerberos Authentication for SSH2.

See GSSAuth

__init__(auth_method, gss_deleg_creds)

Parameters

• auth_method (str) – The name of the SSH authentication mechanism (gssapi-with-
mic or gss-keyex)

• gss_deleg_creds (bool) – Delegate client credentials or not

ssh_init_sec_context(target, desired_mech=None, username=None, recv_token=None)
Initialize a GSS-API context.

Parameters

• username (str) – The name of the user who attempts to login

• target (str) – The hostname of the target to connect to

• desired_mech (str) – The negotiated GSS-API mechanism (“pseudo negotiated”
mechanism, because we support just the krb5 mechanism :-))

• recv_token (str) – The GSS-API token received from the Server

Raises SSHException – Is raised if the desired mechanism of the client is not supported

Returns A String if the GSS-API has returned a token or None if no token was returned

ssh_get_mic(session_id, gss_kex=False)
Create the MIC token for a SSH2 message.

Parameters

• session_id (str) – The SSH session ID

• gss_kex (bool) – Generate the MIC for GSS-API Key Exchange or not

Returns gssapi-with-mic: Returns the MIC token from GSS-API for the message we created
with _ssh_build_mic. gssapi-keyex: Returns the MIC token from GSS-API with the
SSH session ID as message.

ssh_accept_sec_context(hostname, recv_token, username=None)
Accept a GSS-API context (server mode).

Parameters

• hostname (str) – The servers hostname

• username (str) – The name of the user who attempts to login

• recv_token (str) – The GSS-API Token received from the server, if it’s not the initial
call.

Returns A String if the GSS-API has returned a token or None if no token was returned

ssh_check_mic(mic_token, session_id, username=None)
Verify the MIC token for a SSH2 message.

Parameters

44 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

• mic_token (str) – The MIC token received from the client

• session_id (str) – The SSH session ID

• username (str) – The name of the user who attempts to login

Returns None if the MIC check was successful

Raises gssapi.GSSException – if the MIC check failed

credentials_delegated
Checks if credentials are delegated (server mode).

Returns True if credentials are delegated, otherwise False

save_client_creds(client_token)
Save the Client token in a file. This is used by the SSH server to store the client credentials if credentials
are delegated (server mode).

Parameters client_token (str) – The GSS-API token received form the client

Raises NotImplementedError – Credential delegation is currently not supported in server
mode

class paramiko.ssh_gss._SSH_SSPI(auth_method, gss_deleg_creds)
Implementation of the Microsoft SSPI Kerberos Authentication for SSH2.

See GSSAuth

__init__(auth_method, gss_deleg_creds)

Parameters

• auth_method (str) – The name of the SSH authentication mechanism (gssapi-with-
mic or gss-keyex)

• gss_deleg_creds (bool) – Delegate client credentials or not

ssh_init_sec_context(target, desired_mech=None, username=None, recv_token=None)
Initialize a SSPI context.

Parameters

• username (str) – The name of the user who attempts to login

• target (str) – The FQDN of the target to connect to

• desired_mech (str) – The negotiated SSPI mechanism (“pseudo negotiated” mecha-
nism, because we support just the krb5 mechanism :-))

• recv_token – The SSPI token received from the Server

Raises SSHException – Is raised if the desired mechanism of the client is not supported

Returns A String if the SSPI has returned a token or None if no token was returned

ssh_get_mic(session_id, gss_kex=False)
Create the MIC token for a SSH2 message.

Parameters

• session_id (str) – The SSH session ID

• gss_kex (bool) – Generate the MIC for Key Exchange with SSPI or not

Returns gssapi-with-mic: Returns the MIC token from SSPI for the message we created with
_ssh_build_mic. gssapi-keyex: Returns the MIC token from SSPI with the SSH session
ID as message.

1.2. Authentication & keys 45

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool

Paramiko, Release

ssh_accept_sec_context(hostname, username, recv_token)
Accept a SSPI context (server mode).

Parameters

• hostname (str) – The servers FQDN

• username (str) – The name of the user who attempts to login

• recv_token (str) – The SSPI Token received from the server, if it’s not the initial call.

Returns A String if the SSPI has returned a token or None if no token was returned

ssh_check_mic(mic_token, session_id, username=None)
Verify the MIC token for a SSH2 message.

Parameters

• mic_token (str) – The MIC token received from the client

• session_id (str) – The SSH session ID

• username (str) – The name of the user who attempts to login

Returns None if the MIC check was successful

Raises sspi.error – if the MIC check failed

credentials_delegated
Checks if credentials are delegated (server mode).

Returns True if credentials are delegated, otherwise False

save_client_creds(client_token)
Save the Client token in a file. This is used by the SSH server to store the client credentails if credentials
are delegated (server mode).

Parameters client_token (str) – The SSPI token received form the client

Raises NotImplementedError – Credential delegation is currently not supported in server
mode

1.2.5 GSS-API key exchange

This module provides GSS-API / SSPI Key Exchange as defined in RFC 4462.

Note: Credential delegation is not supported in server mode.

Note: RFC 4462 Section 2.2 says we are not required to implement GSS-API error messages. Thus, in many methods
within this module, if an error occurs an exception will be thrown and the connection will be terminated.

See also:

GSS-API authentication

New in version 1.15.

class paramiko.kex_gss.KexGSSGroup1(transport)
GSS-API / SSPI Authenticated Diffie-Hellman Key Exchange as defined in RFC 4462 Section 2

46 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://tools.ietf.org/html/rfc4462.html
https://tools.ietf.org/html/rfc4462.html#section-2.2
https://tools.ietf.org/html/rfc4462.html#section-2

Paramiko, Release

start_kex()
Start the GSS-API / SSPI Authenticated Diffie-Hellman Key Exchange.

parse_next(ptype, m)
Parse the next packet.

Parameters

• ptype – The (string) type of the incoming packet

• m (Message) – The paket content

__weakref__
list of weak references to the object (if defined)

class paramiko.kex_gss.KexGSSGroup14(transport)
GSS-API / SSPI Authenticated Diffie-Hellman Group14 Key Exchange as defined in RFC 4462 Section 2

class paramiko.kex_gss.KexGSSGex(transport)
GSS-API / SSPI Authenticated Diffie-Hellman Group Exchange as defined in RFC 4462 Section 2

start_kex()
Start the GSS-API / SSPI Authenticated Diffie-Hellman Group Exchange

parse_next(ptype, m)
Parse the next packet.

Parameters

• ptype – The (string) type of the incoming packet

• m (Message) – The paket content

__weakref__
list of weak references to the object (if defined)

class paramiko.kex_gss.NullHostKey
This class represents the Null Host Key for GSS-API Key Exchange as defined in RFC 4462 Section 5

__weakref__
list of weak references to the object (if defined)

1.3 Other primary functions

1.3.1 Configuration

Configuration file (aka ssh_config) support.

class paramiko.config.SSHConfig
Representation of config information as stored in the format used by OpenSSH. Queries can be made via
lookup. The format is described in OpenSSH’s ssh_config man page. This class is provided primar-
ily as a convenience to posix users (since the OpenSSH format is a de-facto standard on posix) but should work
fine on Windows too.

New in version 1.6.

__init__()
Create a new OpenSSH config object.

parse(file_obj)
Read an OpenSSH config from the given file object.

1.3. Other primary functions 47

https://tools.ietf.org/html/rfc4462.html#section-2
https://tools.ietf.org/html/rfc4462.html#section-2
https://tools.ietf.org/html/rfc4462.html#section-5

Paramiko, Release

Parameters file_obj – a file-like object to read the config file from

lookup(hostname)
Return a dict (SSHConfigDict) of config options for a given hostname.

The host-matching rules of OpenSSH’s ssh_config man page are used: For each parameter, the first
obtained value will be used. The configuration files contain sections separated by Host specifications,
and that section is only applied for hosts that match one of the patterns given in the specification.

Since the first obtained value for each parameter is used, more host- specific declarations should be given
near the beginning of the file, and general defaults at the end.

The keys in the returned dict are all normalized to lowercase (look for "port", not "Port". The values
are processed according to the rules for substitution variable expansion in ssh_config.

Finally, please see the docs for SSHConfigDict for deeper info on features such as optional type con-
version methods, e.g.:

conf = my_config.lookup('myhost')
assert conf['passwordauthentication'] == 'yes'
assert conf.as_bool('passwordauthentication') is True

Parameters hostname (str) – the hostname to lookup

Changed in version 2.5: Returns SSHConfigDict objects instead of dict literals.

get_hostnames()
Return the set of literal hostnames defined in the SSH config (both explicit hostnames and wildcard entries).

__weakref__
list of weak references to the object (if defined)

class paramiko.config.LazyFqdn(config, host=None)
Returns the host’s fqdn on request as string.

__weakref__
list of weak references to the object (if defined)

class paramiko.config.SSHConfigDict(*args, **kwargs)
A dictionary wrapper/subclass for per-host configuration structures.

This class introduces some usage niceties for consumers of SSHConfig, specifically around the issue of vari-
able type conversions: normal value access yields strings, but there are now methods such as as_bool and
as_int that yield casted values instead.

For example, given the following ssh_config file snippet:

Host foo.example.com
PasswordAuthentication no
Compression yes
ServerAliveInterval 60

the following code highlights how you can access the raw strings as well as usefully Python type-casted versions
(recalling that keys are all normalized to lowercase first):

my_config = SSHConfig()
my_config.parse(open('~/.ssh/config'))
conf = my_config.lookup('foo.example.com')

assert conf['passwordauthentication'] == 'no'
assert conf.as_bool('passwordauthentication') is False

48 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

assert conf['compression'] == 'yes'
assert conf.as_bool('compression') is True
assert conf['serveraliveinterval'] == '60'
assert conf.as_int('serveraliveinterval') == 60

New in version 2.5.

as_bool(key)
Express given key’s value as a boolean type.

Typically, this is used for ssh_config’s pseudo-boolean values which are either "yes" or "no". In
such cases, "yes" yields True and any other value becomes False.

Note: If (for whatever reason) the stored value is already boolean in nature, it’s simply returned.

New in version 2.5.

as_int(key)
Express given key’s value as an integer, if possible.

This method will raise ValueError or similar if the value is not int-appropriate, same as the builtin int
type.

New in version 2.5.

__weakref__
list of weak references to the object (if defined)

1.3.2 ProxyCommand support

class paramiko.proxy.ProxyCommand(command_line)
Wraps a subprocess running ProxyCommand-driven programs.

This class implements a the socket-like interface needed by the Transport and Packetizer classes. Using
this class instead of a regular socket makes it possible to talk with a Popen’d command that will proxy traffic
between the client and a server hosted in another machine.

Instances of this class may be used as context managers.

__init__(command_line)
Create a new CommandProxy instance. The instance created by this class can be passed as an argument to
the Transport class.

Parameters command_line (str) – the command that should be executed and used as the
proxy.

recv(size)
Read from the standard output of the forked program.

Parameters size (int) – how many chars should be read

Returns the string of bytes read, which may be shorter than requested

send(content)
Write the content received from the SSH client to the standard input of the forked command.

Parameters content (str) – string to be sent to the forked command

1.3. Other primary functions 49

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

1.3.3 Server implementation

ServerInterface is an interface to override for server support.

class paramiko.server.ServerInterface
This class defines an interface for controlling the behavior of Paramiko in server mode.

Methods on this class are called from Paramiko’s primary thread, so you shouldn’t do too much work in them.
(Certainly nothing that blocks or sleeps.)

check_channel_request(kind, chanid)
Determine if a channel request of a given type will be granted, and return OPEN_SUCCEEDED or an error
code. This method is called in server mode when the client requests a channel, after authentication is
complete.

If you allow channel requests (and an ssh server that didn’t would be useless), you should also override
some of the channel request methods below, which are used to determine which services will be allowed
on a given channel:

• check_channel_pty_request

• check_channel_shell_request

• check_channel_subsystem_request

• check_channel_window_change_request

• check_channel_x11_request

• check_channel_forward_agent_request

The chanid parameter is a small number that uniquely identifies the channel within a Transport. A
Channel object is not created unless this method returns OPEN_SUCCEEDED – once a Channel object
is created, you can call Channel.get_id to retrieve the channel ID.

The return value should either be OPEN_SUCCEEDED (or 0) to allow the channel request, or one of the
following error codes to reject it:

• OPEN_FAILED_ADMINISTRATIVELY_PROHIBITED

• OPEN_FAILED_CONNECT_FAILED

• OPEN_FAILED_UNKNOWN_CHANNEL_TYPE

• OPEN_FAILED_RESOURCE_SHORTAGE

The default implementation always returns OPEN_FAILED_ADMINISTRATIVELY_PROHIBITED.

Parameters

• kind (str) – the kind of channel the client would like to open (usually "session").

• chanid (int) – ID of the channel

Returns an int success or failure code (listed above)

get_allowed_auths(username)
Return a list of authentication methods supported by the server. This list is sent to clients attempting to
authenticate, to inform them of authentication methods that might be successful.

The “list” is actually a string of comma-separated names of types of authentication. Possible values are
"password", "publickey", and "none".

The default implementation always returns "password".

Parameters username (str) – the username requesting authentication.

50 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

Returns a comma-separated str of authentication types

check_auth_none(username)
Determine if a client may open channels with no (further) authentication.

Return AUTH_FAILED if the client must authenticate, or AUTH_SUCCESSFUL if it’s okay for the client
to not authenticate.

The default implementation always returns AUTH_FAILED.

Parameters username (str) – the username of the client.

Returns AUTH_FAILED if the authentication fails; AUTH_SUCCESSFUL if it succeeds.

Return type int

check_auth_password(username, password)
Determine if a given username and password supplied by the client is acceptable for use in authentication.

Return AUTH_FAILED if the password is not accepted, AUTH_SUCCESSFUL if the password is accepted
and completes the authentication, or AUTH_PARTIALLY_SUCCESSFUL if your authentication is state-
ful, and this key is accepted for authentication, but more authentication is required. (In this latter case,
get_allowed_auths will be called to report to the client what options it has for continuing the au-
thentication.)

The default implementation always returns AUTH_FAILED.

Parameters

• username (str) – the username of the authenticating client.

• password (str) – the password given by the client.

Returns AUTH_FAILED if the authentication fails; AUTH_SUCCESSFUL if it succeeds;
AUTH_PARTIALLY_SUCCESSFUL if the password auth is successful, but authentication
must continue.

Return type int

check_auth_publickey(username, key)
Determine if a given key supplied by the client is acceptable for use in authentication. You should override
this method in server mode to check the username and key and decide if you would accept a signature
made using this key.

Return AUTH_FAILED if the key is not accepted, AUTH_SUCCESSFUL if the key is accepted and com-
pletes the authentication, or AUTH_PARTIALLY_SUCCESSFUL if your authentication is stateful, and
this password is accepted for authentication, but more authentication is required. (In this latter case,
get_allowed_auths will be called to report to the client what options it has for continuing the au-
thentication.)

Note that you don’t have to actually verify any key signtature here. If you’re willing to accept the key,
Paramiko will do the work of verifying the client’s signature.

The default implementation always returns AUTH_FAILED.

Parameters

• username (str) – the username of the authenticating client

• key (PKey) – the key object provided by the client

Returns AUTH_FAILED if the client can’t authenticate with this key; AUTH_SUCCESSFUL
if it can; AUTH_PARTIALLY_SUCCESSFUL if it can authenticate with this key but must
continue with authentication

1.3. Other primary functions 51

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

Return type int

check_auth_interactive(username, submethods)
Begin an interactive authentication challenge, if supported. You should override this method in server
mode if you want to support the "keyboard-interactive" auth type, which requires you to send a
series of questions for the client to answer.

Return AUTH_FAILED if this auth method isn’t supported. Otherwise, you should return an
InteractiveQuery object containing the prompts and instructions for the user. The response will
be sent via a call to check_auth_interactive_response.

The default implementation always returns AUTH_FAILED.

Parameters

• username (str) – the username of the authenticating client

• submethods (str) – a comma-separated list of methods preferred by the client (usually
empty)

Returns AUTH_FAILED if this auth method isn’t supported; otherwise an object containing
queries for the user

Return type int or InteractiveQuery

check_auth_interactive_response(responses)
Continue or finish an interactive authentication challenge, if supported. You should override this method
in server mode if you want to support the "keyboard-interactive" auth type.

Return AUTH_FAILED if the responses are not accepted, AUTH_SUCCESSFUL if the responses are ac-
cepted and complete the authentication, or AUTH_PARTIALLY_SUCCESSFUL if your authentication is
stateful, and this set of responses is accepted for authentication, but more authentication is required. (In this
latter case, get_allowed_auths will be called to report to the client what options it has for continuing
the authentication.)

If you wish to continue interactive authentication with more questions, you may return an
InteractiveQuery object, which should cause the client to respond with more answers, calling this
method again. This cycle can continue indefinitely.

The default implementation always returns AUTH_FAILED.

Parameters responses – list of str responses from the client

Returns AUTH_FAILED if the authentication fails; AUTH_SUCCESSFUL if it succeeds;
AUTH_PARTIALLY_SUCCESSFUL if the interactive auth is successful, but authentication
must continue; otherwise an object containing queries for the user

Return type int or InteractiveQuery

check_auth_gssapi_with_mic(username, gss_authenticated=2, cc_file=None)
Authenticate the given user to the server if he is a valid krb5 principal.

Parameters

• username (str) – The username of the authenticating client

• gss_authenticated (int) – The result of the krb5 authentication

• cc_filename (str) – The krb5 client credentials cache filename

Returns AUTH_FAILED if the user is not authenticated otherwise AUTH_SUCCESSFUL

Return type int

Note Kerberos credential delegation is not supported.

52 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int

Paramiko, Release

See ssh_gss

Note : We are just checking in L{AuthHandler} that the given user is a valid krb5 principal!
We don’t check if the krb5 principal is allowed to log in on the server, because there is no
way to do that in python. So if you develop your own SSH server with paramiko for a cetain
plattform like Linux, you should call C{krb5_kuserok()} in your local kerberos library to
make sure that the krb5_principal has an account on the server and is allowed to log in as a
user.

See http://www.unix.com/man-page/all/3/krb5_kuserok/

check_auth_gssapi_keyex(username, gss_authenticated=2, cc_file=None)
Authenticate the given user to the server if he is a valid krb5 principal and GSS-API Key Exchange was
performed. If GSS-API Key Exchange was not performed, this authentication method won’t be available.

Parameters

• username (str) – The username of the authenticating client

• gss_authenticated (int) – The result of the krb5 authentication

• cc_filename (str) – The krb5 client credentials cache filename

Returns AUTH_FAILED if the user is not authenticated otherwise AUTH_SUCCESSFUL

Return type int

Note Kerberos credential delegation is not supported.

See ssh_gss kex_gss

Note : We are just checking in L{AuthHandler} that the given user is a valid krb5 principal!
We don’t check if the krb5 principal is allowed to log in on the server, because there is no
way to do that in python. So if you develop your own SSH server with paramiko for a cetain
plattform like Linux, you should call C{krb5_kuserok()} in your local kerberos library to
make sure that the krb5_principal has an account on the server and is allowed to log in as a
user.

See http://www.unix.com/man-page/all/3/krb5_kuserok/

enable_auth_gssapi()
Overwrite this function in your SSH server to enable GSSAPI authentication. The default implementation
always returns false.

Returns bool Whether GSSAPI authentication is enabled.

See ssh_gss

check_port_forward_request(address, port)
Handle a request for port forwarding. The client is asking that connections to the given address and port
be forwarded back across this ssh connection. An address of "0.0.0.0" indicates a global address (any
address associated with this server) and a port of 0 indicates that no specific port is requested (usually the
OS will pick a port).

The default implementation always returns False, rejecting the port forwarding request. If the request is
accepted, you should return the port opened for listening.

Parameters

• address (str) – the requested address

• port (int) – the requested port

Returns the port number (int) that was opened for listening, or False to reject

1.3. Other primary functions 53

http://www.unix.com/man-page/all/3/krb5_kuserok/
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
http://www.unix.com/man-page/all/3/krb5_kuserok/
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int

Paramiko, Release

cancel_port_forward_request(address, port)
The client would like to cancel a previous port-forwarding request. If the given address and port is being
forwarded across this ssh connection, the port should be closed.

Parameters

• address (str) – the forwarded address

• port (int) – the forwarded port

check_global_request(kind, msg)
Handle a global request of the given kind. This method is called in server mode and client mode, when-
ever the remote host makes a global request. If there are any arguments to the request, they will be in
msg.

There aren’t any useful global requests defined, aside from port forwarding, so usually this type of request
is an extension to the protocol.

If the request was successful and you would like to return contextual data to the remote host, return a tuple.
Items in the tuple will be sent back with the successful result. (Note that the items in the tuple can only be
strings, ints, longs, or bools.)

The default implementation always returns False, indicating that it does not support any global requests.

Note: Port forwarding requests are handled separately, in check_port_forward_request.

Parameters

• kind (str) – the kind of global request being made.

• msg (Message) – any extra arguments to the request.

Returns True or a tuple of data if the request was granted; False otherwise.

check_channel_pty_request(channel, term, width, height, pixelwidth, pixelheight, modes)
Determine if a pseudo-terminal of the given dimensions (usually requested for shell access) can be pro-
vided on the given channel.

The default implementation always returns False.

Parameters

• channel (Channel) – the Channel the pty request arrived on.

• term (str) – type of terminal requested (for example, "vt100").

• width (int) – width of screen in characters.

• height (int) – height of screen in characters.

• pixelwidth (int) – width of screen in pixels, if known (may be 0 if unknown).

• pixelheight (int) – height of screen in pixels, if known (may be 0 if unknown).

Returns True if the pseudo-terminal has been allocated; False otherwise.

check_channel_shell_request(channel)
Determine if a shell will be provided to the client on the given channel. If this method returns True, the
channel should be connected to the stdin/stdout of a shell (or something that acts like a shell).

The default implementation always returns False.

Parameters channel (Channel) – the Channel the request arrived on.

54 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#tuple
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int

Paramiko, Release

Returns True if this channel is now hooked up to a shell; False if a shell can’t or won’t be
provided.

check_channel_exec_request(channel, command)
Determine if a shell command will be executed for the client. If this method returns True, the channel
should be connected to the stdin, stdout, and stderr of the shell command.

The default implementation always returns False.

Parameters

• channel (Channel) – the Channel the request arrived on.

• command (str) – the command to execute.

Returns True if this channel is now hooked up to the stdin, stdout, and stderr of the executing
command; False if the command will not be executed.

New in version 1.1.

check_channel_subsystem_request(channel, name)
Determine if a requested subsystem will be provided to the client on the given channel. If this method
returns True, all future I/O through this channel will be assumed to be connected to the requested subsys-
tem. An example of a subsystem is sftp.

The default implementation checks for a subsystem handler assigned via Transport.
set_subsystem_handler. If one has been set, the handler is invoked and this method returns
True. Otherwise it returns False.

Note: Because the default implementation uses the Transport to identify valid subsystems, you prob-
ably won’t need to override this method.

Parameters

• channel (Channel) – the Channel the pty request arrived on.

• name (str) – name of the requested subsystem.

Returns True if this channel is now hooked up to the requested subsystem; False if that
subsystem can’t or won’t be provided.

check_channel_window_change_request(channel, width, height, pixelwidth, pixelheight)
Determine if the pseudo-terminal on the given channel can be resized. This only makes sense if a pty was
previously allocated on it.

The default implementation always returns False.

Parameters

• channel (Channel) – the Channel the pty request arrived on.

• width (int) – width of screen in characters.

• height (int) – height of screen in characters.

• pixelwidth (int) – width of screen in pixels, if known (may be 0 if unknown).

• pixelheight (int) – height of screen in pixels, if known (may be 0 if unknown).

Returns True if the terminal was resized; False if not.

1.3. Other primary functions 55

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int

Paramiko, Release

check_channel_x11_request(channel, single_connection, auth_protocol, auth_cookie,
screen_number)

Determine if the client will be provided with an X11 session. If this method returns True, X11 applica-
tions should be routed through new SSH channels, using Transport.open_x11_channel.

The default implementation always returns False.

Parameters

• channel (Channel) – the Channel the X11 request arrived on

• single_connection (bool) – True if only a single X11 channel should be opened,
else False.

• auth_protocol (str) – the protocol used for X11 authentication

• auth_cookie (str) – the cookie used to authenticate to X11

• screen_number (int) – the number of the X11 screen to connect to

Returns True if the X11 session was opened; False if not

check_channel_forward_agent_request(channel)
Determine if the client will be provided with an forward agent session. If this method returns True, the
server will allow SSH Agent forwarding.

The default implementation always returns False.

Parameters channel (Channel) – the Channel the request arrived on

Returns True if the AgentForward was loaded; False if not

check_channel_direct_tcpip_request(chanid, origin, destination)
Determine if a local port forwarding channel will be granted, and return OPEN_SUCCEEDED or an error
code. This method is called in server mode when the client requests a channel, after authentication is
complete.

The chanid parameter is a small number that uniquely identifies the channel within a Transport. A
Channel object is not created unless this method returns OPEN_SUCCEEDED – once a Channel object
is created, you can call Channel.get_id to retrieve the channel ID.

The origin and destination parameters are (ip_address, port) tuples that correspond to both ends of the TCP
connection in the forwarding tunnel.

The return value should either be OPEN_SUCCEEDED (or 0) to allow the channel request, or one of the
following error codes to reject it:

• OPEN_FAILED_ADMINISTRATIVELY_PROHIBITED

• OPEN_FAILED_CONNECT_FAILED

• OPEN_FAILED_UNKNOWN_CHANNEL_TYPE

• OPEN_FAILED_RESOURCE_SHORTAGE

The default implementation always returns OPEN_FAILED_ADMINISTRATIVELY_PROHIBITED.

Parameters

• chanid (int) – ID of the channel

• origin (tuple) – 2-tuple containing the IP address and port of the originator (client
side)

• destination (tuple) – 2-tuple containing the IP address and port of the destination
(server side)

56 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#tuple
https://docs.python.org/2.7/library/functions.html#tuple

Paramiko, Release

Returns an int success or failure code (listed above)

check_channel_env_request(channel, name, value)
Check whether a given environment variable can be specified for the given channel. This method should
return True if the server is willing to set the specified environment variable. Note that some environment
variables (e.g., PATH) can be exceedingly dangerous, so blindly allowing the client to set the environment
is almost certainly not a good idea.

The default implementation always returns False.

Parameters

• channel – the Channel the env request arrived on

• name (str) – name

• value (str) – Channel value

Returns A boolean

get_banner()
A pre-login banner to display to the user. The message may span multiple lines separated by crlf pairs.
The language should be in rfc3066 style, for example: en-US

The default implementation always returns (None, None).

Returns A tuple containing the banner and language code.

New in version 2.3.

__weakref__
list of weak references to the object (if defined)

class paramiko.server.InteractiveQuery(name=”, instructions=”, *prompts)
A query (set of prompts) for a user during interactive authentication.

__init__(name=”, instructions=”, *prompts)
Create a new interactive query to send to the client. The name and instructions are optional, but are
generally displayed to the end user. A list of prompts may be included, or they may be added via the
add_prompt method.

Parameters

• name (str) – name of this query

• instructions (str) – user instructions (usually short) about this query

• prompts (str) – one or more authentication prompts

add_prompt(prompt, echo=True)
Add a prompt to this query. The prompt should be a (reasonably short) string. Multiple prompts can be
added to the same query.

Parameters

• prompt (str) – the user prompt

• echo (bool) – True (default) if the user’s response should be echoed; False if not (for
a password or similar)

__weakref__
list of weak references to the object (if defined)

class paramiko.server.SubsystemHandler(channel, name, server)
Handler for a subsytem in server mode. If you create a subclass of this class and pass it to Transport.
set_subsystem_handler, an object of this class will be created for each request for this subsystem. Each

1.3. Other primary functions 57

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool

Paramiko, Release

new object will be executed within its own new thread by calling start_subsystem. When that method
completes, the channel is closed.

For example, if you made a subclass MP3Handler and registered it as the handler for subsystem "mp3",
then whenever a client has successfully authenticated and requests subsytem "mp3", an object of class
MP3Handler will be created, and start_subsystem will be called on it from a new thread.

__init__(channel, name, server)
Create a new handler for a channel. This is used by ServerInterface to start up a new handler when
a channel requests this subsystem. You don’t need to override this method, but if you do, be sure to pass
the channel and name parameters through to the original __init__ method here.

Parameters

• channel (Channel) – the channel associated with this subsystem request.

• name (str) – name of the requested subsystem.

• server (ServerInterface) – the server object for the session that started this sub-
system

get_server()
Return the ServerInterface object associated with this channel and subsystem.

start_subsystem(name, transport, channel)
Process an ssh subsystem in server mode. This method is called on a new object (and in a new thread)
for each subsystem request. It is assumed that all subsystem logic will take place here, and when the
subsystem is finished, this method will return. After this method returns, the channel is closed.

The combination of transport and channel are unique; this handler corresponds to exactly one
Channel on one Transport.

Note: It is the responsibility of this method to exit if the underlying Transport is closed. This can be
done by checking Transport.is_active or noticing an EOF on the Channel. If this method loops
forever without checking for this case, your Python interpreter may refuse to exit because this thread will
still be running.

Parameters

• name (str) – name of the requested subsystem.

• transport (Transport) – the server-mode Transport.

• channel (Channel) – the channel associated with this subsystem request.

finish_subsystem()
Perform any cleanup at the end of a subsystem. The default implementation just closes the channel.

New in version 1.1.

1.3.4 SFTP

class paramiko.sftp_client.SFTP(sock)
An alias for SFTPClient for backwards compatibility.

class paramiko.sftp_client.SFTPClient(sock)
SFTP client object.

Used to open an SFTP session across an open SSH Transport and perform remote file operations.

58 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

Instances of this class may be used as context managers.

__init__(sock)
Create an SFTP client from an existing Channel. The channel should already have requested the
"sftp" subsystem.

An alternate way to create an SFTP client context is by using from_transport.

Parameters sock (Channel) – an open Channel using the "sftp" subsystem

Raises SSHException – if there’s an exception while negotiating sftp

chdir(path=None)
Change the “current directory” of this SFTP session. Since SFTP doesn’t really have the concept of a
current working directory, this is emulated by Paramiko. Once you use this method to set a working
directory, all operations on this SFTPClient object will be relative to that path. You can pass in None
to stop using a current working directory.

Parameters path (str) – new current working directory

Raises IOError – if the requested path doesn’t exist on the server

New in version 1.4.

chmod(path, mode)
Change the mode (permissions) of a file. The permissions are unix-style and identical to those used by
Python’s os.chmod function.

Parameters

• path (str) – path of the file to change the permissions of

• mode (int) – new permissions

chown(path, uid, gid)
Change the owner (uid) and group (gid) of a file. As with Python’s os.chown function, you must pass
both arguments, so if you only want to change one, use stat first to retrieve the current owner and group.

Parameters

• path (str) – path of the file to change the owner and group of

• uid (int) – new owner’s uid

• gid (int) – new group id

close()
Close the SFTP session and its underlying channel.

New in version 1.4.

file(filename, mode=’r’, bufsize=-1)
Open a file on the remote server. The arguments are the same as for Python’s built-in file (aka open).
A file-like object is returned, which closely mimics the behavior of a normal Python file object, including
the ability to be used as a context manager.

The mode indicates how the file is to be opened: 'r' for reading, 'w' for writing (truncating an existing
file), 'a' for appending, 'r+' for reading/writing, 'w+' for reading/writing (truncating an existing file),
'a+' for reading/appending. The Python 'b' flag is ignored, since SSH treats all files as binary. The
'U' flag is supported in a compatible way.

Since 1.5.2, an 'x' flag indicates that the operation should only succeed if the file was created and did not
previously exist. This has no direct mapping to Python’s file flags, but is commonly known as the O_EXCL
flag in posix.

1.3. Other primary functions 59

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/os.html#os.chmod
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/os.html#os.chown
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#file
https://docs.python.org/2.7/library/functions.html#open

Paramiko, Release

The file will be buffered in standard Python style by default, but can be altered with the bufsize param-
eter. 0 turns off buffering, 1 uses line buffering, and any number greater than 1 (>1) uses that specific
buffer size.

Parameters

• filename (str) – name of the file to open

• mode (str) – mode (Python-style) to open in

• bufsize (int) – desired buffering (-1 = default buffer size)

Returns an SFTPFile object representing the open file

Raises IOError – if the file could not be opened.

classmethod from_transport(t, window_size=None, max_packet_size=None)
Create an SFTP client channel from an open Transport.

Setting the window and packet sizes might affect the transfer speed. The default settings in the
Transport class are the same as in OpenSSH and should work adequately for both files transfers and
interactive sessions.

Parameters

• t (Transport) – an open Transport which is already authenticated

• window_size (int) – optional window size for the SFTPClient session.

• max_packet_size (int) – optional max packet size for the SFTPClient session..

Returns a new SFTPClient object, referring to an sftp session (channel) across the transport

Changed in version 1.15: Added the window_size and max_packet_size arguments.

get(remotepath, localpath, callback=None)
Copy a remote file (remotepath) from the SFTP server to the local host as localpath. Any exception
raised by operations will be passed through. This method is primarily provided as a convenience.

Parameters

• remotepath (str) – the remote file to copy

• localpath (str) – the destination path on the local host

• callback (callable) – optional callback function (form: func(int, int)) that
accepts the bytes transferred so far and the total bytes to be transferred

New in version 1.4.

Changed in version 1.7.4: Added the callback param

get_channel()
Return the underlying Channel object for this SFTP session. This might be useful for doing things like
setting a timeout on the channel.

New in version 1.7.1.

getcwd()
Return the “current working directory” for this SFTP session, as emulated by Paramiko. If no directory
has been set with chdir, this method will return None.

New in version 1.4.

getfo(remotepath, fl, callback=None)
Copy a remote file (remotepath) from the SFTP server and write to an open file or file-like object,

60 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#callable

Paramiko, Release

fl. Any exception raised by operations will be passed through. This method is primarily provided as a
convenience.

Parameters

• remotepath (object) – opened file or file-like object to copy to

• fl (str) – the destination path on the local host or open file object

• callback (callable) – optional callback function (form: func(int, int)) that
accepts the bytes transferred so far and the total bytes to be transferred

Returns the number of bytes written to the opened file object

New in version 1.10.

listdir(path=’.’)
Return a list containing the names of the entries in the given path.

The list is in arbitrary order. It does not include the special entries '.' and '..' even if they are present
in the folder. This method is meant to mirror os.listdir as closely as possible. For a list of full
SFTPAttributes objects, see listdir_attr.

Parameters path (str) – path to list (defaults to '.')

listdir_attr(path=’.’)
Return a list containing SFTPAttributes objects corresponding to files in the given path. The list
is in arbitrary order. It does not include the special entries '.' and '..' even if they are present in the
folder.

The returned SFTPAttributes objects will each have an additional field: longname, which may
contain a formatted string of the file’s attributes, in unix format. The content of this string will probably
depend on the SFTP server implementation.

Parameters path (str) – path to list (defaults to '.')

Returns list of SFTPAttributes objects

New in version 1.2.

listdir_iter(path=’.’, read_aheads=50)
Generator version of listdir_attr.

See the API docs for listdir_attr for overall details.

This function adds one more kwarg on top of listdir_attr: read_aheads, an integer controlling
how many SSH_FXP_READDIR requests are made to the server. The default of 50 should suffice for most
file listings as each request/response cycle may contain multiple files (dependent on server implementa-
tion.)

New in version 1.15.

lstat(path)
Retrieve information about a file on the remote system, without following symbolic links (shortcuts). This
otherwise behaves exactly the same as stat.

Parameters path (str) – the filename to stat

Returns an SFTPAttributes object containing attributes about the given file

mkdir(path, mode=511)
Create a folder (directory) named path with numeric mode mode. The default mode is 0777 (octal). On
some systems, mode is ignored. Where it is used, the current umask value is first masked out.

Parameters

1.3. Other primary functions 61

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#callable
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

• path (str) – name of the folder to create

• mode (int) – permissions (posix-style) for the newly-created folder

normalize(path)
Return the normalized path (on the server) of a given path. This can be used to quickly resolve symbolic
links or determine what the server is considering to be the “current folder” (by passing '.' as path).

Parameters path (str) – path to be normalized

Returns normalized form of the given path (as a str)

Raises IOError – if the path can’t be resolved on the server

open(filename, mode=’r’, bufsize=-1)
Open a file on the remote server. The arguments are the same as for Python’s built-in file (aka open).
A file-like object is returned, which closely mimics the behavior of a normal Python file object, including
the ability to be used as a context manager.

The mode indicates how the file is to be opened: 'r' for reading, 'w' for writing (truncating an existing
file), 'a' for appending, 'r+' for reading/writing, 'w+' for reading/writing (truncating an existing file),
'a+' for reading/appending. The Python 'b' flag is ignored, since SSH treats all files as binary. The
'U' flag is supported in a compatible way.

Since 1.5.2, an 'x' flag indicates that the operation should only succeed if the file was created and did not
previously exist. This has no direct mapping to Python’s file flags, but is commonly known as the O_EXCL
flag in posix.

The file will be buffered in standard Python style by default, but can be altered with the bufsize param-
eter. 0 turns off buffering, 1 uses line buffering, and any number greater than 1 (>1) uses that specific
buffer size.

Parameters

• filename (str) – name of the file to open

• mode (str) – mode (Python-style) to open in

• bufsize (int) – desired buffering (-1 = default buffer size)

Returns an SFTPFile object representing the open file

Raises IOError – if the file could not be opened.

posix_rename(oldpath, newpath)
Rename a file or folder from oldpath to newpath, following posix conventions.

Parameters

• oldpath (str) – existing name of the file or folder

• newpath (str) – new name for the file or folder, will be overwritten if it already exists

Raises IOError – if newpath is a folder, posix-rename is not supported by the server or
something else goes wrong

Versionadded 2.2

put(localpath, remotepath, callback=None, confirm=True)
Copy a local file (localpath) to the SFTP server as remotepath. Any exception raised by operations
will be passed through. This method is primarily provided as a convenience.

The SFTP operations use pipelining for speed.

Parameters

62 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#file
https://docs.python.org/2.7/library/functions.html#open
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

• localpath (str) – the local file to copy

• remotepath (str) – the destination path on the SFTP server. Note that the filename
should be included. Only specifying a directory may result in an error.

• callback (callable) – optional callback function (form: func(int, int)) that
accepts the bytes transferred so far and the total bytes to be transferred

• confirm (bool) – whether to do a stat() on the file afterwards to confirm the file size

Returns an SFTPAttributes object containing attributes about the given file

New in version 1.4.

Changed in version 1.7.4: callback and rich attribute return value added.

Changed in version 1.7.7: confirm param added.

putfo(fl, remotepath, file_size=0, callback=None, confirm=True)
Copy the contents of an open file object (fl) to the SFTP server as remotepath. Any exception raised
by operations will be passed through.

The SFTP operations use pipelining for speed.

Parameters

• fl – opened file or file-like object to copy

• remotepath (str) – the destination path on the SFTP server

• file_size (int) – optional size parameter passed to callback. If none is specified, size
defaults to 0

• callback (callable) – optional callback function (form: func(int, int)) that
accepts the bytes transferred so far and the total bytes to be transferred (since 1.7.4)

• confirm (bool) – whether to do a stat() on the file afterwards to confirm the file size
(since 1.7.7)

Returns an SFTPAttributes object containing attributes about the given file.

New in version 1.10.

readlink(path)
Return the target of a symbolic link (shortcut). You can use symlink to create these. The result may be
either an absolute or relative pathname.

Parameters path (str) – path of the symbolic link file

Returns target path, as a str

remove(path)
Remove the file at the given path. This only works on files; for removing folders (directories), use rmdir.

Parameters path (str) – path (absolute or relative) of the file to remove

Raises IOError – if the path refers to a folder (directory)

rename(oldpath, newpath)
Rename a file or folder from oldpath to newpath.

Note: This method implements ‘standard’ SFTP RENAME behavior; those seeking the OpenSSH “POSIX
rename” extension behavior should use posix_rename.

1.3. Other primary functions 63

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#callable
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#callable
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

Parameters

• oldpath (str) – existing name of the file or folder

• newpath (str) – new name for the file or folder, must not exist already

Raises IOError – if newpath is a folder, or something else goes wrong

rmdir(path)
Remove the folder named path.

Parameters path (str) – name of the folder to remove

stat(path)
Retrieve information about a file on the remote system. The return value is an object whose attributes
correspond to the attributes of Python’s stat structure as returned by os.stat, except that it contains
fewer fields. An SFTP server may return as much or as little info as it wants, so the results may vary from
server to server.

Unlike a Python stat object, the result may not be accessed as a tuple. This is mostly due to the author’s
slack factor.

The fields supported are: st_mode, st_size, st_uid, st_gid, st_atime, and st_mtime.

Parameters path (str) – the filename to stat

Returns an SFTPAttributes object containing attributes about the given file

symlink(source, dest)
Create a symbolic link to the source path at destination.

Parameters

• source (str) – path of the original file

• dest (str) – path of the newly created symlink

truncate(path, size)
Change the size of the file specified by path. This usually extends or shrinks the size of the file, just like
the truncate method on Python file objects.

Parameters

• path (str) – path of the file to modify

• size (int) – the new size of the file

unlink(path)
Remove the file at the given path. This only works on files; for removing folders (directories), use rmdir.

Parameters path (str) – path (absolute or relative) of the file to remove

Raises IOError – if the path refers to a folder (directory)

utime(path, times)
Set the access and modified times of the file specified by path. If times is None, then the file’s access
and modified times are set to the current time. Otherwise, times must be a 2-tuple of numbers, of the
form (atime, mtime), which is used to set the access and modified times, respectively. This bizarre
API is mimicked from Python for the sake of consistency – I apologize.

Parameters

• path (str) – path of the file to modify

• times (tuple) – None or a tuple of (access time, modified time) in standard internet
epoch time (seconds since 01 January 1970 GMT)

64 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stat.html#module-stat
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#file.truncate
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#tuple

Paramiko, Release

Server-mode SFTP support.

class paramiko.sftp_server.SFTPServer(channel, name, server, sftp_si=<class
’paramiko.sftp_si.SFTPServerInterface’>, *largs,
**kwargs)

Server-side SFTP subsystem support. Since this is a SubsystemHandler, it can be (and is meant to be) set
as the handler for "sftp" requests. Use Transport.set_subsystem_handler to activate this class.

__init__(channel, name, server, sftp_si=<class ’paramiko.sftp_si.SFTPServerInterface’>, *largs,
**kwargs)

The constructor for SFTPServer is meant to be called from within the Transport as a subsystem han-
dler. server and any additional parameters or keyword parameters are passed from the original call to
Transport.set_subsystem_handler.

Parameters

• channel (Channel) – channel passed from the Transport.

• name (str) – name of the requested subsystem.

• server (ServerInterface) – the server object associated with this channel and sub-
system

• sftp_si – a subclass of SFTPServerInterface to use for handling individual re-
quests.

static convert_errno(e)
Convert an errno value (as from an OSError or IOError) into a standard SFTP result code. This is a
convenience function for trapping exceptions in server code and returning an appropriate result.

Parameters e (int) – an errno code, as from OSError.errno.

Returns an int SFTP error code like SFTP_NO_SUCH_FILE.

static set_file_attr(filename, attr)
Change a file’s attributes on the local filesystem. The contents of attr are used to change the permissions,
owner, group ownership, and/or modification & access time of the file, depending on which attributes are
present in attr.

This is meant to be a handy helper function for translating SFTP file requests into local file operations.

Parameters

• filename (str) – name of the file to alter (should usually be an absolute path).

• attr (SFTPAttributes) – attributes to change.

class paramiko.sftp_attr.SFTPAttributes
Representation of the attributes of a file (or proxied file) for SFTP in client or server mode. It attemps to mirror
the object returned by os.stat as closely as possible, so it may have the following fields, with the same
meanings as those returned by an os.stat object:

• st_size

• st_uid

• st_gid

• st_mode

• st_atime

• st_mtime

Because SFTP allows flags to have other arbitrary named attributes, these are stored in a dict named attr.
Occasionally, the filename is also stored, in filename.

1.3. Other primary functions 65

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/os.html#os.stat
https://docs.python.org/2.7/library/os.html#os.stat

Paramiko, Release

__init__()
Create a new (empty) SFTPAttributes object. All fields will be empty.

__str__()
create a unix-style long description of the file (like ls -l)

__weakref__
list of weak references to the object (if defined)

classmethod from_stat(obj, filename=None)
Create an SFTPAttributes object from an existing stat object (an object returned by os.stat).

Parameters

• obj (object) – an object returned by os.stat (or equivalent).

• filename (str) – the filename associated with this file.

Returns new SFTPAttributes object with the same attribute fields.

SFTP file object

class paramiko.sftp_file.SFTPFile(sftp, handle, mode=’r’, bufsize=-1)
Bases: paramiko.file.BufferedFile

Proxy object for a file on the remote server, in client mode SFTP.

Instances of this class may be used as context managers in the same way that built-in Python file objects are.

check(hash_algorithm, offset=0, length=0, block_size=0)
Ask the server for a hash of a section of this file. This can be used to verify a successful upload or
download, or for various rsync-like operations.

The file is hashed from offset, for length bytes. If length is 0, the remainder of the file is hashed.
Thus, if both offset and length are zero, the entire file is hashed.

Normally, block_size will be 0 (the default), and this method will return a byte string representing the
requested hash (for example, a string of length 16 for MD5, or 20 for SHA-1). If a non-zero block_size
is given, each chunk of the file (from offset to offset + length) of block_size bytes is com-
puted as a separate hash. The hash results are all concatenated and returned as a single string.

For example, check('sha1', 0, 1024, 512) will return a string of length 40. The first 20 bytes
will be the SHA-1 of the first 512 bytes of the file, and the last 20 bytes will be the SHA-1 of the next 512
bytes.

Parameters

• hash_algorithm (str) – the name of the hash algorithm to use (normally "sha1"
or "md5")

• offset – offset into the file to begin hashing (0 means to start from the beginning)

• length – number of bytes to hash (0 means continue to the end of the file)

• block_size (int) – number of bytes to hash per result (must not be less than 256; 0
means to compute only one hash of the entire segment)

Returns str of bytes representing the hash of each block, concatenated together

Raises IOError – if the server doesn’t support the “check-file” extension, or possibly doesn’t
support the hash algorithm requested

Note: Many (most?) servers don’t support this extension yet.

66 Chapter 1. API documentation

https://docs.python.org/2.7/library/os.html#os.stat
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/os.html#os.stat
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

New in version 1.4.

chmod(mode)
Change the mode (permissions) of this file. The permissions are unix-style and identical to those used by
Python’s os.chmod function.

Parameters mode (int) – new permissions

chown(uid, gid)
Change the owner (uid) and group (gid) of this file. As with Python’s os.chown function, you must
pass both arguments, so if you only want to change one, use stat first to retrieve the current owner and
group.

Parameters

• uid (int) – new owner’s uid

• gid (int) – new group id

close()
Close the file.

flush()
Write out any data in the write buffer. This may do nothing if write buffering is not turned on.

gettimeout()
Returns the timeout in seconds (as a float) associated with the socket or ssh Channel used for this file.

See also:

Channel.gettimeout

prefetch(file_size=None)
Pre-fetch the remaining contents of this file in anticipation of future read calls. If reading the entire
file, pre-fetching can dramatically improve the download speed by avoiding roundtrip latency. The file’s
contents are incrementally buffered in a background thread.

The prefetched data is stored in a buffer until read via the read method. Once data has been read, it’s
removed from the buffer. The data may be read in a random order (using seek); chunks of the buffer that
haven’t been read will continue to be buffered.

Parameters file_size (int) – When this is None (the default), this method calls stat to
determine the remote file size. In some situations, doing so can cause exceptions or hangs
(see #562); as a workaround, one may call stat explicitly and pass its value in via this
parameter.

New in version 1.5.1.

Changed in version 1.16.0: The file_size parameter was added (with no default value).

Changed in version 1.16.1: The file_size parameter was made optional for backwards compatibility.

read(size=None)
Read at most size bytes from the file (less if we hit the end of the file first). If the size argument is
negative or omitted, read all the remaining data in the file.

Note: 'b' mode flag is ignored (self.FLAG_BINARY in self._flags), because SSH treats all
files as binary, since we have no idea what encoding the file is in, or even if the file is text data.

Parameters size (int) – maximum number of bytes to read

1.3. Other primary functions 67

https://docs.python.org/2.7/library/os.html#os.chmod
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/os.html#os.chown
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int
https://github.com/paramiko/paramiko/pull/562
https://docs.python.org/2.7/library/functions.html#int

Paramiko, Release

Returns data read from the file (as bytes), or an empty string if EOF was encountered immedi-
ately

readable()
Check if the file can be read from.

Returns True if the file can be read from. If False, read will raise an exception.

readinto(buff)
Read up to len(buff) bytes into bytearray buff and return the number of bytes read.

Returns The number of bytes read.

readline(size=None)
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when
a file ends with an incomplete line). If the size argument is present and non-negative, it is a maximum byte
count (including the trailing newline) and an incomplete line may be returned. An empty string is returned
only when EOF is encountered immediately.

Note: Unlike stdio’s fgets, the returned string contains null characters ('\0') if they occurred in the
input.

Parameters size (int) – maximum length of returned string.

Returns

next line of the file, or an empty string if the end of the file has been reached.

If the file was opened in binary ('b') mode: bytes are returned Else: the encoding of the file
is assumed to be UTF-8 and character strings (str) are returned

readlines(sizehint=None)
Read all remaining lines using readline and return them as a list. If the optional sizehint argument
is present, instead of reading up to EOF, whole lines totalling approximately sizehint bytes (possibly after
rounding up to an internal buffer size) are read.

Parameters sizehint (int) – desired maximum number of bytes to read.

Returns list of lines read from the file.

readv(chunks)
Read a set of blocks from the file by (offset, length). This is more efficient than doing a series of seek
and read calls, since the prefetch machinery is used to retrieve all the requested blocks at once.

Parameters chunks – a list of (offset, length) tuples indicating which sections of the
file to read

Returns a list of blocks read, in the same order as in chunks

New in version 1.5.4.

seek(offset, whence=0)
Set the file’s current position.

See file.seek for details.

seekable()
Check if the file supports random access.

Returns True if the file supports random access. If False, seek() will raise an exception

68 Chapter 1. API documentation

https://docs.python.org/2.7/library/constants.html#True
https://docs.python.org/2.7/library/constants.html#False
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/stdtypes.html#file.seek
https://docs.python.org/2.7/library/constants.html#True
https://docs.python.org/2.7/library/constants.html#False

Paramiko, Release

set_pipelined(pipelined=True)
Turn on/off the pipelining of write operations to this file. When pipelining is on, paramiko won’t wait
for the server response after each write operation. Instead, they’re collected as they come in. At the first
non-write operation (including close), all remaining server responses are collected. This means that if
there was an error with one of your later writes, an exception might be thrown from within close instead
of write.

By default, files are not pipelined.

Parameters pipelined (bool) – True if pipelining should be turned on for this file; False
otherwise

New in version 1.5.

setblocking(blocking)
Set blocking or non-blocking mode on the underiying socket or ssh Channel.

Parameters blocking (int) – 0 to set non-blocking mode; non-0 to set blocking mode.

See also:

Channel.setblocking

settimeout(timeout)
Set a timeout on read/write operations on the underlying socket or ssh Channel.

Parameters timeout (float) – seconds to wait for a pending read/write operation before
raising socket.timeout, or None for no timeout

See also:

Channel.settimeout

stat()
Retrieve information about this file from the remote system. This is exactly like SFTPClient.stat,
except that it operates on an already-open file.

Returns an SFTPAttributes object containing attributes about this file.

tell()
Return the file’s current position. This may not be accurate or useful if the underlying file doesn’t support
random access, or was opened in append mode.

Returns file position (number of bytes).

truncate(size)
Change the size of this file. This usually extends or shrinks the size of the file, just like the truncate()
method on Python file objects.

Parameters size – the new size of the file

utime(times)
Set the access and modified times of this file. If times is None, then the file’s access and modified
times are set to the current time. Otherwise, times must be a 2-tuple of numbers, of the form (atime,
mtime), which is used to set the access and modified times, respectively. This bizarre API is mimicked
from Python for the sake of consistency – I apologize.

Parameters times (tuple) – None or a tuple of (access time, modified time) in standard
internet epoch time (seconds since 01 January 1970 GMT)

writable()
Check if the file can be written to.

Returns True if the file can be written to. If False, write will raise an exception.

1.3. Other primary functions 69

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#tuple
https://docs.python.org/2.7/library/constants.html#True
https://docs.python.org/2.7/library/constants.html#False

Paramiko, Release

write(data)
Write data to the file. If write buffering is on (bufsize was specified and non-zero), some or all of the
data may not actually be written yet. (Use flush or close to force buffered data to be written out.)

Parameters data – str/bytes data to write

writelines(sequence)
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typ-
ically a list of strings. (The name is intended to match readlines; writelines does not add line
separators.)

Parameters sequence – an iterable sequence of strings.

xreadlines()
Identical to iter(f). This is a deprecated file interface that predates Python iterator support.

Abstraction of an SFTP file handle (for server mode).

class paramiko.sftp_handle.SFTPHandle(flags=0)
Abstract object representing a handle to an open file (or folder) in an SFTP server implementation. Each handle
has a string representation used by the client to refer to the underlying file.

Server implementations can (and should) subclass SFTPHandle to implement features of a file handle, like
stat or chattr.

Instances of this class may be used as context managers.

__init__(flags=0)
Create a new file handle representing a local file being served over SFTP. If flags is passed in, it’s used
to determine if the file is open in append mode.

Parameters flags (int) – optional flags as passed to SFTPServerInterface.open

chattr(attr)
Change the attributes of this file. The attr object will contain only those fields provided by the client in
its request, so you should check for the presence of fields before using them.

Parameters attr (SFTPAttributes) – the attributes to change on this file.

Returns an int error code like SFTP_OK.

close()
When a client closes a file, this method is called on the handle. Normally you would use this method to
close the underlying OS level file object(s).

The default implementation checks for attributes on self named readfile and/or writefile, and if
either or both are present, their close() methods are called. This means that if you are using the default
implementations of read and write, this method’s default implementation should be fine also.

read(offset, length)
Read up to length bytes from this file, starting at position offset. The offset may be a Python long,
since SFTP allows it to be 64 bits.

If the end of the file has been reached, this method may return an empty string to signify EOF, or it may
also return SFTP_EOF.

The default implementation checks for an attribute on self named readfile, and if present, performs
the read operation on the Python file-like object found there. (This is meant as a time saver for the common
case where you are wrapping a Python file object.)

Parameters

• offset – position in the file to start reading from.

70 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int

Paramiko, Release

• length (int) – number of bytes to attempt to read.

Returns data read from the file, or an SFTP error code, as a str.

stat()
Return an SFTPAttributes object referring to this open file, or an error code. This is equivalent to
SFTPServerInterface.stat, except it’s called on an open file instead of a path.

Returns an attributes object for the given file, or an SFTP error code (like
SFTP_PERMISSION_DENIED).

Return type SFTPAttributes or error code

write(offset, data)
Write data into this file at position offset. Extending the file past its original end is expected. Unlike
Python’s normal write() methods, this method cannot do a partial write: it must write all of data or
else return an error.

The default implementation checks for an attribute on self named writefile, and if present, performs
the write operation on the Python file-like object found there. The attribute is named differently from
readfile to make it easy to implement read-only (or write-only) files, but if both attributes are present,
they should refer to the same file.

Parameters

• offset – position in the file to start reading from.

• data (str) – data to write into the file.

Returns an SFTP error code like SFTP_OK.

An interface to override for SFTP server support.

class paramiko.sftp_si.SFTPServerInterface(server, *largs, **kwargs)
This class defines an interface for controlling the behavior of paramiko when using the SFTPServer subsystem
to provide an SFTP server.

Methods on this class are called from the SFTP session’s thread, so you can block as long as necessary without
affecting other sessions (even other SFTP sessions). However, raising an exception will usually cause the SFTP
session to abruptly end, so you will usually want to catch exceptions and return an appropriate error code.

All paths are in string form instead of unicode because not all SFTP clients & servers obey the requirement that
paths be encoded in UTF-8.

__init__(server, *largs, **kwargs)
Create a new SFTPServerInterface object. This method does nothing by default and is meant to be over-
ridden by subclasses.

Parameters server (ServerInterface) – the server object associated with this channel
and SFTP subsystem

__weakref__
list of weak references to the object (if defined)

canonicalize(path)
Return the canonical form of a path on the server. For example, if the server’s home folder is /home/
foo, the path "../betty" would be canonicalized to "/home/betty". Note the obvious security
issues: if you’re serving files only from a specific folder, you probably don’t want this method to reveal
path names outside that folder.

You may find the Python methods in os.path useful, especially os.path.normpath and os.path.
realpath.

The default implementation returns os.path.normpath('/' + path).

1.3. Other primary functions 71

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

chattr(path, attr)
Change the attributes of a file. The attr object will contain only those fields provided by the client in its
request, so you should check for the presence of fields before using them.

Parameters

• path (str) – requested path (relative or absolute) of the file to change.

• attr – requested attributes to change on the file (an SFTPAttributes object)

Returns an error code int like SFTP_OK.

list_folder(path)
Return a list of files within a given folder. The path will use posix notation ("/" separates folder names)
and may be an absolute or relative path.

The list of files is expected to be a list of SFTPAttributes objects, which are similar in structure to
the objects returned by os.stat. In addition, each object should have its filename field filled in,
since this is important to a directory listing and not normally present in os.stat results. The method
SFTPAttributes.from_stat will usually do what you want.

In case of an error, you should return one of the SFTP_* error codes, such as
SFTP_PERMISSION_DENIED.

Parameters path (str) – the requested path (relative or absolute) to be listed.

Returns a list of the files in the given folder, using SFTPAttributes objects.

Note: You should normalize the given path first (see the os.path module) and check appropriate
permissions before returning the list of files. Be careful of malicious clients attempting to use relative
paths to escape restricted folders, if you’re doing a direct translation from the SFTP server path to your
local filesystem.

lstat(path)
Return an SFTPAttributes object for a path on the server, or an error code. If your server supports
symbolic links (also known as “aliases”), you should not follow them – instead, you should return data on
the symlink or alias itself. (stat is the corresponding call that follows symlinks/aliases.)

Parameters path (str) – the requested path (relative or absolute) to fetch file statistics for.

Returns an SFTPAttributes object for the given file, or an SFTP error code (like
SFTP_PERMISSION_DENIED).

mkdir(path, attr)
Create a new directory with the given attributes. The attr object may be considered a “hint” and ignored.

The attr object will contain only those fields provided by the client in its request, so you should use
hasattr to check for the presence of fields before using them. In some cases, the attr object may be
completely empty.

Parameters

• path (str) – requested path (relative or absolute) of the new folder.

• attr (SFTPAttributes) – requested attributes of the new folder.

Returns an SFTP error code int like SFTP_OK.

open(path, flags, attr)
Open a file on the server and create a handle for future operations on that file. On success, a new object
subclassed from SFTPHandle should be returned. This handle will be used for future operations on

72 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/os.path.html#module-os.path
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int

Paramiko, Release

the file (read, write, etc). On failure, an error code such as SFTP_PERMISSION_DENIED should be
returned.

flags contains the requested mode for opening (read-only, write-append, etc) as a bitset of flags from the
os module:

• os.O_RDONLY

• os.O_WRONLY

• os.O_RDWR

• os.O_APPEND

• os.O_CREAT

• os.O_TRUNC

• os.O_EXCL

(One of os.O_RDONLY, os.O_WRONLY, or os.O_RDWR will always be set.)

The attr object contains requested attributes of the file if it has to be created. Some or all attribute fields
may be missing if the client didn’t specify them.

Note: The SFTP protocol defines all files to be in “binary” mode. There is no equivalent to Python’s
“text” mode.

Parameters

• path (str) – the requested path (relative or absolute) of the file to be opened.

• flags (int) – flags or’d together from the os module indicating the requested mode for
opening the file.

• attr (SFTPAttributes) – requested attributes of the file if it is newly created.

Returns a new SFTPHandle or error code.

posix_rename(oldpath, newpath)
Rename (or move) a file, following posix conventions. If newpath already exists, it will be overwritten.

Parameters

• oldpath (str) – the requested path (relative or absolute) of the existing file.

• newpath (str) – the requested new path of the file.

Returns an SFTP error code int like SFTP_OK.

Versionadded 2.2

readlink(path)
Return the target of a symbolic link (or shortcut) on the server. If the specified path doesn’t refer to a
symbolic link, an error should be returned.

Parameters path (str) – path (relative or absolute) of the symbolic link.

Returns the target str path of the symbolic link, or an error code like SFTP_NO_SUCH_FILE.

remove(path)
Delete a file, if possible.

Parameters path (str) – the requested path (relative or absolute) of the file to delete.

1.3. Other primary functions 73

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

Returns an SFTP error code int like SFTP_OK.

rename(oldpath, newpath)
Rename (or move) a file. The SFTP specification implies that this method can be used to move an existing
file into a different folder, and since there’s no other (easy) way to move files via SFTP, it’s probably a
good idea to implement “move” in this method too, even for files that cross disk partition boundaries, if at
all possible.

Note: You should return an error if a file with the same name as newpath already exists. (The rename
operation should be non-desctructive.)

Note: This method implements ‘standard’ SFTP RENAME behavior; those seeking the OpenSSH “POSIX
rename” extension behavior should use posix_rename.

Parameters

• oldpath (str) – the requested path (relative or absolute) of the existing file.

• newpath (str) – the requested new path of the file.

Returns an SFTP error code int like SFTP_OK.

rmdir(path)
Remove a directory if it exists. The path should refer to an existing, empty folder – otherwise this method
should return an error.

Parameters path (str) – requested path (relative or absolute) of the folder to remove.

Returns an SFTP error code int like SFTP_OK.

session_ended()
The SFTP server session has just ended, either cleanly or via an exception. This method is meant to be
overridden to perform any necessary cleanup before this SFTPServerInterface object is destroyed.

session_started()
The SFTP server session has just started. This method is meant to be overridden to perform any necessary
setup before handling callbacks from SFTP operations.

stat(path)
Return an SFTPAttributes object for a path on the server, or an error code. If your server supports
symbolic links (also known as “aliases”), you should follow them. (lstat is the corresponding call that
doesn’t follow symlinks/aliases.)

Parameters path (str) – the requested path (relative or absolute) to fetch file statistics for.

Returns an SFTPAttributes object for the given file, or an SFTP error code (like
SFTP_PERMISSION_DENIED).

symlink(target_path, path)
Create a symbolic link on the server, as new pathname path, with target_path as the target of the
link.

Parameters

• target_path (str) – path (relative or absolute) of the target for this new symbolic
link.

• path (str) – path (relative or absolute) of the symbolic link to create.

74 Chapter 1. API documentation

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

Returns an error code int like SFTP_OK.

1.4 Miscellany

1.4.1 Buffered pipes

Attempt to generalize the “feeder” part of a Channel: an object which can be read from and closed, but is reading
from a buffer fed by another thread. The read operations are blocking and can have a timeout set.

class paramiko.buffered_pipe.BufferedPipe
A buffer that obeys normal read (with timeout) & close semantics for a file or socket, but is fed data from another
thread. This is used by Channel.

__len__()
Return the number of bytes buffered.

Returns number (int) of bytes buffered

__weakref__
list of weak references to the object (if defined)

close()
Close this pipe object. Future calls to read after the buffer has been emptied will return immediately with
an empty string.

empty()
Clear out the buffer and return all data that was in it.

Returns any data that was in the buffer prior to clearing it out, as a str

feed(data)
Feed new data into this pipe. This method is assumed to be called from a separate thread, so synchroniza-
tion is done.

Parameters data – the data to add, as a str or bytes

read(nbytes, timeout=None)
Read data from the pipe. The return value is a string representing the data received. The maximum amount
of data to be received at once is specified by nbytes. If a string of length zero is returned, the pipe has
been closed.

The optional timeout argument can be a nonnegative float expressing seconds, or None for no timeout.
If a float is given, a PipeTimeout will be raised if the timeout period value has elapsed before any data
arrives.

Parameters

• nbytes (int) – maximum number of bytes to read

• timeout (float) – maximum seconds to wait (or None, the default, to wait forever)

Returns the read data, as a str or bytes

Raises PipeTimeout – if a timeout was specified and no data was ready before that timeout

read_ready()
Returns true if data is buffered and ready to be read from this feeder. A False result does not mean that
the feeder has closed; it means you may need to wait before more data arrives.

Returns True if a read call would immediately return at least one byte; False otherwise.

1.4. Miscellany 75

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float

Paramiko, Release

set_event(event)
Set an event on this buffer. When data is ready to be read (or the buffer has been closed), the event will be
set. When no data is ready, the event will be cleared.

Parameters event (threading.Event) – the event to set/clear

exception paramiko.buffered_pipe.PipeTimeout
Indicates that a timeout was reached on a read from a BufferedPipe.

__weakref__
list of weak references to the object (if defined)

1.4.2 Buffered files

class paramiko.file.BufferedFile
Reusable base class to implement Python-style file buffering around a simpler stream.

__iter__()
Returns an iterator that can be used to iterate over the lines in this file. This iterator happens to return the
file itself, since a file is its own iterator.

Raises ValueError – if the file is closed.

__next__()
Returns the next line from the input, or raises StopIteration when EOF is hit. Unlike python file
objects, it’s okay to mix calls to next and readline.

Raises StopIteration – when the end of the file is reached.

Returns a line (str) read from the file.

close()
Close the file. Future read and write operations will fail.

flush()
Write out any data in the write buffer. This may do nothing if write buffering is not turned on.

read(size=None)
Read at most size bytes from the file (less if we hit the end of the file first). If the size argument is
negative or omitted, read all the remaining data in the file.

Note: 'b' mode flag is ignored (self.FLAG_BINARY in self._flags), because SSH treats all
files as binary, since we have no idea what encoding the file is in, or even if the file is text data.

Parameters size (int) – maximum number of bytes to read

Returns data read from the file (as bytes), or an empty string if EOF was encountered immedi-
ately

readable()
Check if the file can be read from.

Returns True if the file can be read from. If False, read will raise an exception.

readinto(buff)
Read up to len(buff) bytes into bytearray buff and return the number of bytes read.

Returns The number of bytes read.

76 Chapter 1. API documentation

https://docs.python.org/2.7/library/threading.html#threading.Event
https://docs.python.org/2.7/library/functions.html#next
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#True
https://docs.python.org/2.7/library/constants.html#False

Paramiko, Release

readline(size=None)
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when
a file ends with an incomplete line). If the size argument is present and non-negative, it is a maximum byte
count (including the trailing newline) and an incomplete line may be returned. An empty string is returned
only when EOF is encountered immediately.

Note: Unlike stdio’s fgets, the returned string contains null characters ('\0') if they occurred in the
input.

Parameters size (int) – maximum length of returned string.

Returns

next line of the file, or an empty string if the end of the file has been reached.

If the file was opened in binary ('b') mode: bytes are returned Else: the encoding of the file
is assumed to be UTF-8 and character strings (str) are returned

readlines(sizehint=None)
Read all remaining lines using readline and return them as a list. If the optional sizehint argument
is present, instead of reading up to EOF, whole lines totalling approximately sizehint bytes (possibly after
rounding up to an internal buffer size) are read.

Parameters sizehint (int) – desired maximum number of bytes to read.

Returns list of lines read from the file.

seek(offset, whence=0)
Set the file’s current position, like stdio’s fseek. Not all file objects support seeking.

Note: If a file is opened in append mode ('a' or 'a+'), any seek operations will be undone at the next
write (as the file position will move back to the end of the file).

Parameters

• offset (int) – position to move to within the file, relative to whence.

• whence (int) – type of movement: 0 = absolute; 1 = relative to the current position; 2 =
relative to the end of the file.

Raises IOError – if the file doesn’t support random access.

seekable()
Check if the file supports random access.

Returns True if the file supports random access. If False, seek will raise an exception.

tell()
Return the file’s current position. This may not be accurate or useful if the underlying file doesn’t support
random access, or was opened in append mode.

Returns file position (number of bytes).

writable()
Check if the file can be written to.

Returns True if the file can be written to. If False, write will raise an exception.

1.4. Miscellany 77

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#True
https://docs.python.org/2.7/library/constants.html#False
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#True
https://docs.python.org/2.7/library/constants.html#False

Paramiko, Release

write(data)
Write data to the file. If write buffering is on (bufsize was specified and non-zero), some or all of the
data may not actually be written yet. (Use flush or close to force buffered data to be written out.)

Parameters data – str/bytes data to write

writelines(sequence)
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typ-
ically a list of strings. (The name is intended to match readlines; writelines does not add line
separators.)

Parameters sequence – an iterable sequence of strings.

xreadlines()
Identical to iter(f). This is a deprecated file interface that predates Python iterator support.

1.4.3 Cross-platform pipe implementations

Abstraction of a one-way pipe where the read end can be used in select.select. Normally this is trivial, but
Windows makes it nearly impossible.

The pipe acts like an Event, which can be set or cleared. When set, the pipe will trigger as readable in select.

class paramiko.pipe.WindowsPipe
On Windows, only an OS-level “WinSock” may be used in select(), but reads and writes must be to the actual
socket object.

__weakref__
list of weak references to the object (if defined)

paramiko.pipe.make_or_pipe(pipe)
wraps a pipe into two pipe-like objects which are “or”d together to affect the real pipe. if either returned pipe is
set, the wrapped pipe is set. when both are cleared, the wrapped pipe is cleared.

1.4.4 Exceptions

exception paramiko.ssh_exception.AuthenticationException
Exception raised when authentication failed for some reason. It may be possible to retry with different creden-
tials. (Other classes specify more specific reasons.)

New in version 1.6.

exception paramiko.ssh_exception.BadAuthenticationType(explanation, types)
Exception raised when an authentication type (like password) is used, but the server isn’t allowing that type. (It
may only allow public-key, for example.)

New in version 1.1.

allowed_types = []
list of allowed authentication types provided by the server (possible values are: "none", "password",
and "publickey").

exception paramiko.ssh_exception.BadHostKeyException(hostname, got_key, ex-
pected_key)

The host key given by the SSH server did not match what we were expecting.

Parameters

• hostname (str) – the hostname of the SSH server

78 Chapter 1. API documentation

https://docs.python.org/2.7/library/select.html#select.select
https://docs.python.org/2.7/library/select.html#select.select
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

• got_key (PKey) – the host key presented by the server

• expected_key (PKey) – the host key expected

New in version 1.6.

exception paramiko.ssh_exception.ChannelException(code, text)
Exception raised when an attempt to open a new Channel fails.

Parameters code (int) – the error code returned by the server

New in version 1.6.

exception paramiko.ssh_exception.NoValidConnectionsError(errors)
Multiple connection attempts were made and no families succeeded.

This exception class wraps multiple “real” underlying connection errors, all of which represent failed connection
attempts. Because these errors are not guaranteed to all be of the same error type (i.e. different errno, socket.
error subclass, message, etc) we expose a single unified error message and a None errno so that instances of
this class match most normal handling of socket.error objects.

To see the wrapped exception objects, access the errors attribute. errors is a dict whose keys are address
tuples (e.g. ('127.0.0.1', 22)) and whose values are the exception encountered trying to connect to that
address.

It is implied/assumed that all the errors given to a single instance of this class are from connecting to the same
hostname + port (and thus that the differences are in the resolution of the hostname - e.g. IPv4 vs v6).

New in version 1.16.

__init__(errors)

Parameters errors (dict) – The errors dict to store, as described by class docstring.

__weakref__
list of weak references to the object (if defined)

exception paramiko.ssh_exception.PartialAuthentication(types)
An internal exception thrown in the case of partial authentication.

exception paramiko.ssh_exception.PasswordRequiredException
Exception raised when a password is needed to unlock a private key file.

exception paramiko.ssh_exception.ProxyCommandFailure(command, error)
The “ProxyCommand” found in the .ssh/config file returned an error.

Parameters

• command (str) – The command line that is generating this exception.

• error (str) – The error captured from the proxy command output.

exception paramiko.ssh_exception.SSHException
Exception raised by failures in SSH2 protocol negotiation or logic errors.

__weakref__
list of weak references to the object (if defined)

1.4. Miscellany 79

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/socket.html#socket.error
https://docs.python.org/2.7/library/socket.html#socket.error
https://docs.python.org/2.7/library/socket.html#socket.error
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Paramiko, Release

80 Chapter 1. API documentation

Python Module Index

p
paramiko.agent, 31
paramiko.buffered_pipe, 75
paramiko.channel, 3
paramiko.client, 11
paramiko.config, 47
paramiko.dsskey, 41
paramiko.ecdsakey, 42
paramiko.ed25519key, 42
paramiko.file, 76
paramiko.hostkeys, 37
paramiko.kex_gss, 46
paramiko.message, 16
paramiko.packet, 18
paramiko.pipe, 78
paramiko.pkey, 38
paramiko.proxy, 49
paramiko.rsakey, 41
paramiko.server, 50
paramiko.sftp, 58
paramiko.sftp_attr, 65
paramiko.sftp_client, 58
paramiko.sftp_file, 66
paramiko.sftp_handle, 70
paramiko.sftp_server, 65
paramiko.sftp_si, 71
paramiko.ssh_exception, 78
paramiko.ssh_gss, 42
paramiko.transport, 19

81

Paramiko, Release

82 Python Module Index

Index

Symbols
_SSH_GSSAPI (class in paramiko.ssh_gss), 44
_SSH_GSSAuth (class in paramiko.ssh_gss), 43
_SSH_SSPI (class in paramiko.ssh_gss), 45
__cmp__() (paramiko.pkey.PKey method), 38
__init__() (paramiko.channel.Channel method), 3
__init__() (paramiko.client.SSHClient method), 11
__init__() (paramiko.config.SSHConfig method), 47
__init__() (paramiko.hostkeys.HostKeys method), 37
__init__() (paramiko.message.Message method), 16
__init__() (paramiko.pkey.PKey method), 38
__init__() (paramiko.pkey.PublicBlob method), 41
__init__() (paramiko.proxy.ProxyCommand method), 49
__init__() (paramiko.server.InteractiveQuery method), 57
__init__() (paramiko.server.SubsystemHandler method),

58
__init__() (paramiko.sftp_attr.SFTPAttributes method),

65
__init__() (paramiko.sftp_client.SFTPClient method), 59
__init__() (paramiko.sftp_handle.SFTPHandle method),

70
__init__() (paramiko.sftp_server.SFTPServer method),

65
__init__() (paramiko.sftp_si.SFTPServerInterface

method), 71
__init__() (paramiko.ssh_exception.NoValidConnectionsError

method), 79
__init__() (paramiko.ssh_gss._SSH_GSSAPI method),

44
__init__() (paramiko.ssh_gss._SSH_GSSAuth method),

43
__init__() (paramiko.ssh_gss._SSH_SSPI method), 45
__init__() (paramiko.transport.Transport method), 19
__iter__() (paramiko.file.BufferedFile method), 76
__len__() (paramiko.buffered_pipe.BufferedPipe

method), 75
__next__() (paramiko.file.BufferedFile method), 76
__repr__() (paramiko.channel.Channel method), 4
__repr__() (paramiko.channel.ChannelFile method), 11

__repr__() (paramiko.message.Message method), 16
__repr__() (paramiko.transport.SecurityOptions method),

30
__repr__() (paramiko.transport.Transport method), 20
__str__() (paramiko.message.Message method), 16
__str__() (paramiko.sftp_attr.SFTPAttributes method), 66
__weakref__ (paramiko.buffered_pipe.BufferedPipe at-

tribute), 75
__weakref__ (paramiko.buffered_pipe.PipeTimeout at-

tribute), 76
__weakref__ (paramiko.client.MissingHostKeyPolicy at-

tribute), 15
__weakref__ (paramiko.config.LazyFqdn attribute), 48
__weakref__ (paramiko.config.SSHConfig attribute), 48
__weakref__ (paramiko.config.SSHConfigDict attribute),

49
__weakref__ (paramiko.hostkeys.HostKeyEntry at-

tribute), 38
__weakref__ (paramiko.hostkeys.HostKeys attribute), 38
__weakref__ (paramiko.kex_gss.KexGSSGex attribute),

47
__weakref__ (paramiko.kex_gss.KexGSSGroup1 at-

tribute), 47
__weakref__ (paramiko.kex_gss.NullHostKey attribute),

47
__weakref__ (paramiko.message.Message attribute), 16
__weakref__ (paramiko.packet.NeedRekeyException at-

tribute), 18
__weakref__ (paramiko.packet.Packetizer attribute), 18
__weakref__ (paramiko.pipe.WindowsPipe attribute), 78
__weakref__ (paramiko.pkey.PKey attribute), 39
__weakref__ (paramiko.pkey.PublicBlob attribute), 41
__weakref__ (paramiko.server.InteractiveQuery at-

tribute), 57
__weakref__ (paramiko.server.ServerInterface attribute),

57
__weakref__ (paramiko.sftp_attr.SFTPAttributes at-

tribute), 66
__weakref__ (paramiko.sftp_si.SFTPServerInterface at-

tribute), 71

83

Paramiko, Release

__weakref__ (paramiko.ssh_exception.NoValidConnectionsError
attribute), 79

__weakref__ (paramiko.ssh_exception.SSHException at-
tribute), 79

__weakref__ (paramiko.ssh_gss._SSH_GSSAuth at-
tribute), 44

A
accept() (paramiko.transport.Transport method), 25
active (paramiko.channel.Channel attribute), 4
add() (paramiko.hostkeys.HostKeys method), 37
add() (paramiko.message.Message method), 16
add_adaptive_int() (paramiko.message.Message method),

16
add_boolean() (paramiko.message.Message method), 16
add_byte() (paramiko.message.Message method), 16
add_bytes() (paramiko.message.Message method), 16
add_int() (paramiko.message.Message method), 16
add_int64() (paramiko.message.Message method), 16
add_list() (paramiko.message.Message method), 17
add_mpint() (paramiko.message.Message method), 17
add_prompt() (paramiko.server.InteractiveQuery

method), 57
add_server_key() (paramiko.transport.Transport method),

21
add_string() (paramiko.message.Message method), 17
Agent (class in paramiko.agent), 31
AgentClientProxy (class in paramiko.agent), 31
AgentKey (class in paramiko.agent), 31
AgentLocalProxy (class in paramiko.agent), 33
AgentProxyThread (class in paramiko.agent), 34
AgentRemoteProxy (class in paramiko.agent), 35
AgentRequestHandler (class in paramiko.agent), 36
AgentServerProxy (class in paramiko.agent), 36
allowed_types (paramiko.ssh_exception.BadAuthenticationType

attribute), 78
as_bool() (paramiko.config.SSHConfigDict method), 49
as_int() (paramiko.config.SSHConfigDict method), 49
asbytes() (paramiko.message.Message method), 17
asbytes() (paramiko.pkey.PKey method), 39
atfork() (paramiko.transport.Transport method), 20
auth_gssapi_keyex() (paramiko.transport.Transport

method), 29
auth_gssapi_with_mic() (paramiko.transport.Transport

method), 29
auth_interactive() (paramiko.transport.Transport

method), 28
auth_interactive_dumb() (paramiko.transport.Transport

method), 29
auth_none() (paramiko.transport.Transport method), 27
auth_password() (paramiko.transport.Transport method),

27
auth_publickey() (paramiko.transport.Transport method),

28

AuthenticationException, 78
AutoAddPolicy (class in paramiko.client), 15

B
BadAuthenticationType, 78
BadHostKeyException, 78
BufferedFile (class in paramiko.file), 76
BufferedPipe (class in paramiko.buffered_pipe), 75

C
can_sign() (paramiko.agent.AgentKey method), 31
can_sign() (paramiko.pkey.PKey method), 39
cancel_port_forward() (paramiko.transport.Transport

method), 24
cancel_port_forward_request()

(paramiko.server.ServerInterface method),
53

canonicalize() (paramiko.sftp_si.SFTPServerInterface
method), 71

chanid (paramiko.channel.Channel attribute), 4
Channel (class in paramiko.channel), 3
ChannelException, 79
ChannelFile (class in paramiko.channel), 11
chattr() (paramiko.sftp_handle.SFTPHandle method), 70
chattr() (paramiko.sftp_si.SFTPServerInterface method),

71
chdir() (paramiko.sftp_client.SFTPClient method), 59
check() (paramiko.hostkeys.HostKeys method), 37
check() (paramiko.sftp_file.SFTPFile method), 66
check_auth_gssapi_keyex()

(paramiko.server.ServerInterface method),
53

check_auth_gssapi_with_mic()
(paramiko.server.ServerInterface method),
52

check_auth_interactive() (paramiko.server.ServerInterface
method), 52

check_auth_interactive_response()
(paramiko.server.ServerInterface method),
52

check_auth_none() (paramiko.server.ServerInterface
method), 51

check_auth_password() (paramiko.server.ServerInterface
method), 51

check_auth_publickey() (paramiko.server.ServerInterface
method), 51

check_channel_direct_tcpip_request()
(paramiko.server.ServerInterface method),
56

check_channel_env_request()
(paramiko.server.ServerInterface method),
57

check_channel_exec_request()
(paramiko.server.ServerInterface method),

84 Index

Paramiko, Release

55
check_channel_forward_agent_request()

(paramiko.server.ServerInterface method),
56

check_channel_pty_request()
(paramiko.server.ServerInterface method),
54

check_channel_request()
(paramiko.server.ServerInterface method),
50

check_channel_shell_request()
(paramiko.server.ServerInterface method),
54

check_channel_subsystem_request()
(paramiko.server.ServerInterface method),
55

check_channel_window_change_request()
(paramiko.server.ServerInterface method),
55

check_channel_x11_request()
(paramiko.server.ServerInterface method),
55

check_global_request() (paramiko.server.ServerInterface
method), 54

check_port_forward_request()
(paramiko.server.ServerInterface method),
53

chmod() (paramiko.sftp_client.SFTPClient method), 59
chmod() (paramiko.sftp_file.SFTPFile method), 67
chown() (paramiko.sftp_client.SFTPClient method), 59
chown() (paramiko.sftp_file.SFTPFile method), 67
ciphers (paramiko.transport.SecurityOptions attribute),

30
clear() (paramiko.hostkeys.HostKeys method), 38
close() (paramiko.agent.Agent method), 31
close() (paramiko.agent.AgentClientProxy method), 31
close() (paramiko.agent.AgentServerProxy method), 36
close() (paramiko.buffered_pipe.BufferedPipe method),

75
close() (paramiko.channel.Channel method), 4
close() (paramiko.client.SSHClient method), 14
close() (paramiko.file.BufferedFile method), 76
close() (paramiko.sftp_client.SFTPClient method), 59
close() (paramiko.sftp_file.SFTPFile method), 67
close() (paramiko.sftp_handle.SFTPHandle method), 70
close() (paramiko.transport.Transport method), 22
closed (paramiko.channel.Channel attribute), 4
complete_handshake() (paramiko.packet.Packetizer

method), 18
compression (paramiko.transport.SecurityOptions at-

tribute), 30
connect() (paramiko.agent.AgentClientProxy method), 31
connect() (paramiko.client.SSHClient method), 12
connect() (paramiko.transport.Transport method), 25

convert_errno() (paramiko.sftp_server.SFTPServer static
method), 65

credentials_delegated (paramiko.ssh_gss._SSH_GSSAPI
attribute), 45

credentials_delegated (paramiko.ssh_gss._SSH_SSPI at-
tribute), 46

D
daemon (paramiko.agent.AgentLocalProxy attribute), 33
daemon (paramiko.agent.AgentProxyThread attribute),

34
daemon (paramiko.agent.AgentRemoteProxy attribute),

35
digests (paramiko.transport.SecurityOptions attribute), 30
DSSKey (class in paramiko.dsskey), 41

E
ECDSAKey (class in paramiko.ecdsakey), 42
Ed25519Key (class in paramiko.ed25519key), 42
empty() (paramiko.buffered_pipe.BufferedPipe method),

75
enable_auth_gssapi() (paramiko.server.ServerInterface

method), 53
exec_command() (paramiko.channel.Channel method), 4
exec_command() (paramiko.client.SSHClient method),

14
exit_status_ready() (paramiko.channel.Channel method),

4

F
feed() (paramiko.buffered_pipe.BufferedPipe method),

75
file() (paramiko.sftp_client.SFTPClient method), 59
fileno() (paramiko.channel.Channel method), 4
finish_subsystem() (paramiko.server.SubsystemHandler

method), 58
flush() (paramiko.file.BufferedFile method), 76
flush() (paramiko.sftp_file.SFTPFile method), 67
from_file() (paramiko.pkey.PublicBlob class method), 41
from_line() (paramiko.hostkeys.HostKeyEntry class

method), 38
from_message() (paramiko.pkey.PublicBlob class

method), 41
from_private_key() (paramiko.agent.AgentKey method),

31
from_private_key() (paramiko.pkey.PKey class method),

39
from_private_key_file() (paramiko.agent.AgentKey

method), 32
from_private_key_file() (paramiko.pkey.PKey class

method), 39
from_stat() (paramiko.sftp_attr.SFTPAttributes class

method), 66

Index 85

Paramiko, Release

from_string() (paramiko.pkey.PublicBlob class method),
41

from_transport() (paramiko.sftp_client.SFTPClient class
method), 60

G
generate() (paramiko.dsskey.DSSKey static method), 41
generate() (paramiko.ecdsakey.ECDSAKey class

method), 42
generate() (paramiko.rsakey.RSAKey static method), 42
get() (paramiko.sftp_client.SFTPClient method), 60
get_adaptive_int() (paramiko.message.Message method),

17
get_allowed_auths() (paramiko.server.ServerInterface

method), 50
get_banner() (paramiko.server.ServerInterface method),

57
get_banner() (paramiko.transport.Transport method), 27
get_base64() (paramiko.agent.AgentKey method), 32
get_base64() (paramiko.pkey.PKey method), 39
get_binary() (paramiko.message.Message method), 17
get_bits() (paramiko.agent.AgentKey method), 32
get_bits() (paramiko.pkey.PKey method), 39
get_boolean() (paramiko.message.Message method), 17
get_byte() (paramiko.message.Message method), 17
get_bytes() (paramiko.message.Message method), 17
get_channel() (paramiko.sftp_client.SFTPClient

method), 60
get_connection() (paramiko.agent.AgentLocalProxy

method), 33
get_env() (paramiko.agent.AgentServerProxy method),

36
get_exception() (paramiko.transport.Transport method),

26
get_fingerprint() (paramiko.agent.AgentKey method), 32
get_fingerprint() (paramiko.pkey.PKey method), 39
get_hexdump() (paramiko.transport.Transport method),

30
get_host_keys() (paramiko.client.SSHClient method), 12
get_hostnames() (paramiko.config.SSHConfig method),

48
get_id() (paramiko.channel.Channel method), 4
get_int() (paramiko.message.Message method), 17
get_int64() (paramiko.message.Message method), 17
get_keys() (paramiko.agent.Agent method), 31
get_keys() (paramiko.agent.AgentServerProxy method),

36
get_list() (paramiko.message.Message method), 17
get_log_channel() (paramiko.transport.Transport

method), 29
get_mpint() (paramiko.message.Message method), 17
get_name() (paramiko.channel.Channel method), 5
get_name() (paramiko.pkey.PKey method), 40
get_pty() (paramiko.channel.Channel method), 5

get_remainder() (paramiko.message.Message method),
17

get_remote_server_key() (paramiko.transport.Transport
method), 22

get_security_options() (paramiko.transport.Transport
method), 20

get_server() (paramiko.server.SubsystemHandler
method), 58

get_server_key() (paramiko.transport.Transport method),
22

get_so_far() (paramiko.message.Message method), 17
get_string() (paramiko.message.Message method), 18
get_text() (paramiko.message.Message method), 18
get_transport() (paramiko.channel.Channel method), 5
get_transport() (paramiko.client.SSHClient method), 15
get_username() (paramiko.transport.Transport method),

26
getcwd() (paramiko.sftp_client.SFTPClient method), 60
getfo() (paramiko.sftp_client.SFTPClient method), 60
getpeername() (paramiko.channel.Channel method), 5
getpeername() (paramiko.transport.Transport method), 30
gettimeout() (paramiko.channel.Channel method), 5
gettimeout() (paramiko.sftp_file.SFTPFile method), 67
global_request() (paramiko.transport.Transport method),

25
GSS_AUTH_AVAILABLE (in module

paramiko.ssh_gss), 43
GSS_EXCEPTIONS (in module paramiko.ssh_gss), 42
GSSAuth() (in module paramiko.ssh_gss), 43

H
handshake_timed_out() (paramiko.packet.Packetizer

method), 18
hash_host() (paramiko.hostkeys.HostKeys static method),

38
HostKeyEntry (class in paramiko.hostkeys), 38
HostKeys (class in paramiko.hostkeys), 37

I
ident (paramiko.agent.AgentLocalProxy attribute), 33
ident (paramiko.agent.AgentProxyThread attribute), 34
ident (paramiko.agent.AgentRemoteProxy attribute), 35
InteractiveQuery (class in paramiko.server), 57
invoke_shell() (paramiko.channel.Channel method), 5
invoke_shell() (paramiko.client.SSHClient method), 14
invoke_subsystem() (paramiko.channel.Channel

method), 5
is_active() (paramiko.transport.Transport method), 22
is_alive() (paramiko.agent.AgentLocalProxy method), 33
is_alive() (paramiko.agent.AgentProxyThread method),

34
is_alive() (paramiko.agent.AgentRemoteProxy method),

35

86 Index

Paramiko, Release

is_authenticated() (paramiko.transport.Transport
method), 26

isAlive() (paramiko.agent.AgentLocalProxy method), 33
isAlive() (paramiko.agent.AgentProxyThread method),

34
isAlive() (paramiko.agent.AgentRemoteProxy method),

35

J
join() (paramiko.agent.AgentLocalProxy method), 33
join() (paramiko.agent.AgentProxyThread method), 34
join() (paramiko.agent.AgentRemoteProxy method), 35

K
kex (paramiko.transport.SecurityOptions attribute), 30
KexGSSGex (class in paramiko.kex_gss), 47
KexGSSGroup1 (class in paramiko.kex_gss), 46
KexGSSGroup14 (class in paramiko.kex_gss), 47
key_types (paramiko.transport.SecurityOptions attribute),

30

L
LazyFqdn (class in paramiko.config), 48
list_folder() (paramiko.sftp_si.SFTPServerInterface

method), 72
listdir() (paramiko.sftp_client.SFTPClient method), 61
listdir_attr() (paramiko.sftp_client.SFTPClient method),

61
listdir_iter() (paramiko.sftp_client.SFTPClient method),

61
load() (paramiko.hostkeys.HostKeys method), 37
load_certificate() (paramiko.agent.AgentKey method), 32
load_certificate() (paramiko.pkey.PKey method), 40
load_host_keys() (paramiko.client.SSHClient method),

12
load_server_moduli() (paramiko.transport.Transport

static method), 22
load_system_host_keys() (paramiko.client.SSHClient

method), 11
lookup() (paramiko.config.SSHConfig method), 48
lookup() (paramiko.hostkeys.HostKeys method), 37
lstat() (paramiko.sftp_client.SFTPClient method), 61
lstat() (paramiko.sftp_si.SFTPServerInterface method),

72

M
make_or_pipe() (in module paramiko.pipe), 78
makefile() (paramiko.channel.Channel method), 5
makefile_stderr() (paramiko.channel.Channel method), 6
Message (class in paramiko.message), 16
missing_host_key() (paramiko.client.MissingHostKeyPolicy

method), 15
MissingHostKeyPolicy (class in paramiko.client), 15
mkdir() (paramiko.sftp_client.SFTPClient method), 61

mkdir() (paramiko.sftp_si.SFTPServerInterface method),
72

N
name (paramiko.agent.AgentLocalProxy attribute), 34
name (paramiko.agent.AgentProxyThread attribute), 35
name (paramiko.agent.AgentRemoteProxy attribute), 36
need_rekey() (paramiko.packet.Packetizer method), 18
NeedRekeyException, 18
normalize() (paramiko.sftp_client.SFTPClient method),

62
NoValidConnectionsError, 79
NullHostKey (class in paramiko.kex_gss), 47

O
open() (paramiko.sftp_client.SFTPClient method), 62
open() (paramiko.sftp_si.SFTPServerInterface method),

72
open_channel() (paramiko.transport.Transport method),

23
open_forward_agent_channel()

(paramiko.transport.Transport method), 23
open_forwarded_tcpip_channel()

(paramiko.transport.Transport method), 23
open_only() (in module paramiko.channel), 11
open_session() (paramiko.transport.Transport method),

22
open_sftp() (paramiko.client.SSHClient method), 15
open_sftp_client() (paramiko.transport.Transport

method), 24
open_x11_channel() (paramiko.transport.Transport

method), 23

P
Packetizer (class in paramiko.packet), 18
paramiko.agent (module), 31
paramiko.buffered_pipe (module), 75
paramiko.channel (module), 3
paramiko.client (module), 11
paramiko.config (module), 47
paramiko.dsskey (module), 41
paramiko.ecdsakey (module), 42
paramiko.ed25519key (module), 42
paramiko.file (module), 76
paramiko.hostkeys (module), 37
paramiko.kex_gss (module), 46
paramiko.message (module), 16
paramiko.packet (module), 18
paramiko.pipe (module), 78
paramiko.pkey (module), 38
paramiko.proxy (module), 49
paramiko.rsakey (module), 41
paramiko.server (module), 50
paramiko.sftp (module), 58

Index 87

Paramiko, Release

paramiko.sftp_attr (module), 65
paramiko.sftp_client (module), 58
paramiko.sftp_file (module), 66
paramiko.sftp_handle (module), 70
paramiko.sftp_server (module), 65
paramiko.sftp_si (module), 71
paramiko.ssh_exception (module), 78
paramiko.ssh_gss (module), 42
paramiko.transport (module), 19
parse() (paramiko.config.SSHConfig method), 47
parse_next() (paramiko.kex_gss.KexGSSGex method),

47
parse_next() (paramiko.kex_gss.KexGSSGroup1

method), 47
PartialAuthentication, 79
PasswordRequiredException, 79
PipeTimeout, 76
PKey (class in paramiko.pkey), 38
posix_rename() (paramiko.sftp_client.SFTPClient

method), 62
posix_rename() (paramiko.sftp_si.SFTPServerInterface

method), 73
prefetch() (paramiko.sftp_file.SFTPFile method), 67
ProxyCommand (class in paramiko.proxy), 49
ProxyCommandFailure, 79
PublicBlob (class in paramiko.pkey), 41
put() (paramiko.sftp_client.SFTPClient method), 62
putfo() (paramiko.sftp_client.SFTPClient method), 63

R
read() (paramiko.buffered_pipe.BufferedPipe method),

75
read() (paramiko.file.BufferedFile method), 76
read() (paramiko.sftp_file.SFTPFile method), 67
read() (paramiko.sftp_handle.SFTPHandle method), 70
read_all() (paramiko.packet.Packetizer method), 18
read_message() (paramiko.packet.Packetizer method), 18
read_ready() (paramiko.buffered_pipe.BufferedPipe

method), 75
readable() (paramiko.file.BufferedFile method), 76
readable() (paramiko.sftp_file.SFTPFile method), 68
readinto() (paramiko.file.BufferedFile method), 76
readinto() (paramiko.sftp_file.SFTPFile method), 68
readline() (paramiko.file.BufferedFile method), 76
readline() (paramiko.packet.Packetizer method), 18
readline() (paramiko.sftp_file.SFTPFile method), 68
readlines() (paramiko.file.BufferedFile method), 77
readlines() (paramiko.sftp_file.SFTPFile method), 68
readlink() (paramiko.sftp_client.SFTPClient method), 63
readlink() (paramiko.sftp_si.SFTPServerInterface

method), 73
readv() (paramiko.sftp_file.SFTPFile method), 68
recv() (paramiko.channel.Channel method), 6
recv() (paramiko.proxy.ProxyCommand method), 49

recv_exit_status() (paramiko.channel.Channel method), 6
recv_ready() (paramiko.channel.Channel method), 6
recv_stderr() (paramiko.channel.Channel method), 6
recv_stderr_ready() (paramiko.channel.Channel method),

7
RejectPolicy (class in paramiko.client), 15
remote_chanid (paramiko.channel.Channel attribute), 7
remove() (paramiko.sftp_client.SFTPClient method), 63
remove() (paramiko.sftp_si.SFTPServerInterface

method), 73
rename() (paramiko.sftp_client.SFTPClient method), 63
rename() (paramiko.sftp_si.SFTPServerInterface

method), 74
renegotiate_keys() (paramiko.transport.Transport

method), 25
request_forward_agent() (paramiko.channel.Channel

method), 7
request_port_forward() (paramiko.transport.Transport

method), 24
request_x11() (paramiko.channel.Channel method), 7
resize_pty() (paramiko.channel.Channel method), 7
rewind() (paramiko.message.Message method), 18
RFC

RFC 4254, 7
RFC 4462, 42, 46

rmdir() (paramiko.sftp_client.SFTPClient method), 64
rmdir() (paramiko.sftp_si.SFTPServerInterface method),

74
RSAKey (class in paramiko.rsakey), 41

S
save() (paramiko.hostkeys.HostKeys method), 37
save_client_creds() (paramiko.ssh_gss._SSH_GSSAPI

method), 45
save_client_creds() (paramiko.ssh_gss._SSH_SSPI

method), 46
save_host_keys() (paramiko.client.SSHClient method),

12
SecurityOptions (class in paramiko.transport), 30
seek() (paramiko.file.BufferedFile method), 77
seek() (paramiko.sftp_file.SFTPFile method), 68
seekable() (paramiko.file.BufferedFile method), 77
seekable() (paramiko.sftp_file.SFTPFile method), 68
send() (paramiko.channel.Channel method), 8
send() (paramiko.proxy.ProxyCommand method), 49
send_exit_status() (paramiko.channel.Channel method), 8
send_ignore() (paramiko.transport.Transport method), 25
send_message() (paramiko.packet.Packetizer method), 19
send_ready() (paramiko.channel.Channel method), 8
send_stderr() (paramiko.channel.Channel method), 8
sendall() (paramiko.channel.Channel method), 8
sendall_stderr() (paramiko.channel.Channel method), 9
ServerInterface (class in paramiko.server), 50

88 Index

Paramiko, Release

session_ended() (paramiko.sftp_si.SFTPServerInterface
method), 74

session_started() (paramiko.sftp_si.SFTPServerInterface
method), 74

set_combine_stderr() (paramiko.channel.Channel
method), 9

set_environment_variable() (paramiko.channel.Channel
method), 9

set_event() (paramiko.buffered_pipe.BufferedPipe
method), 75

set_file_attr() (paramiko.sftp_server.SFTPServer static
method), 65

set_gss_host() (paramiko.transport.Transport method), 20
set_hexdump() (paramiko.transport.Transport method),

30
set_inbound_cipher() (paramiko.packet.Packetizer

method), 19
set_keepalive() (paramiko.packet.Packetizer method), 19
set_keepalive() (paramiko.transport.Transport method),

25
set_log() (paramiko.packet.Packetizer method), 19
set_log_channel() (paramiko.client.SSHClient method),

12
set_log_channel() (paramiko.transport.Transport

method), 29
set_missing_host_key_policy()

(paramiko.client.SSHClient method), 12
set_name() (paramiko.channel.Channel method), 9
set_outbound_cipher() (paramiko.packet.Packetizer

method), 19
set_pipelined() (paramiko.sftp_file.SFTPFile method), 68
set_service() (paramiko.ssh_gss._SSH_GSSAuth

method), 43
set_subsystem_handler() (paramiko.transport.Transport

method), 26
set_username() (paramiko.ssh_gss._SSH_GSSAuth

method), 43
setblocking() (paramiko.channel.Channel method), 9
setblocking() (paramiko.sftp_file.SFTPFile method), 69
settimeout() (paramiko.channel.Channel method), 10
settimeout() (paramiko.sftp_file.SFTPFile method), 69
SFTP (class in paramiko.sftp_client), 58
SFTPAttributes (class in paramiko.sftp_attr), 65
SFTPClient (class in paramiko.sftp_client), 58
SFTPFile (class in paramiko.sftp_file), 66
SFTPHandle (class in paramiko.sftp_handle), 70
SFTPServer (class in paramiko.sftp_server), 65
SFTPServerInterface (class in paramiko.sftp_si), 71
shutdown() (paramiko.channel.Channel method), 10
shutdown_read() (paramiko.channel.Channel method), 10
shutdown_write() (paramiko.channel.Channel method),

10
sign_ssh_data() (paramiko.pkey.PKey method), 40
ssh_accept_sec_context()

(paramiko.ssh_gss._SSH_GSSAPI method), 44
ssh_accept_sec_context() (paramiko.ssh_gss._SSH_SSPI

method), 45
ssh_check_mech() (paramiko.ssh_gss._SSH_GSSAuth

method), 43
ssh_check_mic() (paramiko.ssh_gss._SSH_GSSAPI

method), 44
ssh_check_mic() (paramiko.ssh_gss._SSH_SSPI

method), 46
ssh_get_mic() (paramiko.ssh_gss._SSH_GSSAPI

method), 44
ssh_get_mic() (paramiko.ssh_gss._SSH_SSPI method),

45
ssh_gss_oids() (paramiko.ssh_gss._SSH_GSSAuth

method), 43
ssh_init_sec_context() (paramiko.ssh_gss._SSH_GSSAPI

method), 44
ssh_init_sec_context() (paramiko.ssh_gss._SSH_SSPI

method), 45
SSHClient (class in paramiko.client), 11
SSHConfig (class in paramiko.config), 47
SSHConfigDict (class in paramiko.config), 48
SSHException, 79
start() (paramiko.agent.AgentLocalProxy method), 34
start() (paramiko.agent.AgentProxyThread method), 35
start() (paramiko.agent.AgentRemoteProxy method), 36
start_client() (paramiko.transport.Transport method), 20
start_handshake() (paramiko.packet.Packetizer method),

19
start_kex() (paramiko.kex_gss.KexGSSGex method), 47
start_kex() (paramiko.kex_gss.KexGSSGroup1 method),

46
start_server() (paramiko.transport.Transport method), 21
start_subsystem() (paramiko.server.SubsystemHandler

method), 58
stat() (paramiko.sftp_client.SFTPClient method), 64
stat() (paramiko.sftp_file.SFTPFile method), 69
stat() (paramiko.sftp_handle.SFTPHandle method), 71
stat() (paramiko.sftp_si.SFTPServerInterface method), 74
SubsystemHandler (class in paramiko.server), 57
symlink() (paramiko.sftp_client.SFTPClient method), 64
symlink() (paramiko.sftp_si.SFTPServerInterface

method), 74

T
tell() (paramiko.file.BufferedFile method), 77
tell() (paramiko.sftp_file.SFTPFile method), 69
to_line() (paramiko.hostkeys.HostKeyEntry method), 38
Transport (class in paramiko.transport), 19
transport (paramiko.channel.Channel attribute), 10
truncate() (paramiko.sftp_client.SFTPClient method), 64
truncate() (paramiko.sftp_file.SFTPFile method), 69

Index 89

Paramiko, Release

U
unlink() (paramiko.sftp_client.SFTPClient method), 64
update_environment() (paramiko.channel.Channel

method), 10
use_compression() (paramiko.transport.Transport

method), 30
utime() (paramiko.sftp_client.SFTPClient method), 64
utime() (paramiko.sftp_file.SFTPFile method), 69

V
verify_ssh_sig() (paramiko.agent.AgentKey method), 32
verify_ssh_sig() (paramiko.pkey.PKey method), 40

W
WarningPolicy (class in paramiko.client), 15
WindowsPipe (class in paramiko.pipe), 78
writable() (paramiko.file.BufferedFile method), 77
writable() (paramiko.sftp_file.SFTPFile method), 69
write() (paramiko.file.BufferedFile method), 77
write() (paramiko.sftp_file.SFTPFile method), 69
write() (paramiko.sftp_handle.SFTPHandle method), 71
write_private_key() (paramiko.agent.AgentKey method),

33
write_private_key() (paramiko.pkey.PKey method), 40
write_private_key_file() (paramiko.agent.AgentKey

method), 33
write_private_key_file() (paramiko.pkey.PKey method),

40
writelines() (paramiko.file.BufferedFile method), 78
writelines() (paramiko.sftp_file.SFTPFile method), 70

X
xreadlines() (paramiko.file.BufferedFile method), 78
xreadlines() (paramiko.sftp_file.SFTPFile method), 70

90 Index

	API documentation
	Core SSH protocol classes
	Authentication & keys
	Other primary functions
	Miscellany

	Python Module Index
	Index

