

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Paramiko documentation »

Welcome to Paramiko’s documentation!

This site covers Paramiko’s usage & API documentation. For basic info on what
Paramiko is, including its public changelog & how the project is maintained,
please see the main project website [http://paramiko.org].

API documentation

The high-level client API starts with creation of an SSHClient object. For
more direct control, pass a socket (or socket-like object) to a Transport,
and use start_server or start_client to negotiate with the remote host as either a server
or client.

As a client, you are responsible for authenticating using a password or private
key, and checking the server’s host key. (Key signature and verification is
done by paramiko, but you will need to provide private keys and check that the
content of a public key matches what you expected to see.)

As a server, you are responsible for deciding which users, passwords, and keys
to allow, and what kind of channels to allow.

Once you have finished, either side may request flow-controlled channels to the other side, which are Python objects that act like sockets,
but send and receive data over the encrypted session.

For details, please see the following tables of contents (which are organized
by area of interest.)

Core SSH protocol classes

	Channel

	Client

	Message

	Packetizer

	Transport

Authentication & keys

	SSH agents

	Host keys / known_hosts files

	Key handling
	Parent key class

	DSA (DSS)

	RSA

	ECDSA

	GSS-API authentication

	GSS-API key exchange

Other primary functions

	Configuration

	ProxyCommand support

	Server implementation

	SFTP

Miscellany

	Buffered pipes

	Buffered files

	Cross-platform pipe implementations

	Exceptions

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

Channel

Abstraction for an SSH2 channel.

	
class paramiko.channel.Channel(chanid)

	A secure tunnel across an SSH Transport. A Channel is meant to behave
like a socket, and has an API that should be indistinguishable from the
Python socket API.

Because SSH2 has a windowing kind of flow control, if you stop reading data
from a Channel and its buffer fills up, the server will be unable to send
you any more data until you read some of it. (This won’t affect other
channels on the same transport – all channels on a single transport are
flow-controlled independently.) Similarly, if the server isn’t reading
data you send, calls to send may block, unless you set a timeout. This
is exactly like a normal network socket, so it shouldn’t be too surprising.

Instances of this class may be used as context managers.

	
__init__(chanid)

	Create a new channel. The channel is not associated with any
particular session or Transport until the Transport attaches it.
Normally you would only call this method from the constructor of a
subclass of Channel.

	Parameters:	chanid (int [https://docs.python.org/2.6/library/functions.html#int]) – the ID of this channel, as passed by an existing Transport.

	
__repr__()

	Return a string representation of this object, for debugging.

	
close()

	Close the channel. All future read/write operations on the channel
will fail. The remote end will receive no more data (after queued data
is flushed). Channels are automatically closed when their Transport
is closed or when they are garbage collected.

	
exec_command(*args, **kwds)

	Execute a command on the server. If the server allows it, the channel
will then be directly connected to the stdin, stdout, and stderr of
the command being executed.

When the command finishes executing, the channel will be closed and
can’t be reused. You must open a new channel if you wish to execute
another command.

	Parameters:	command (str [https://docs.python.org/2.6/library/functions.html#str]) – a shell command to execute.

	Raises:	SSHException – if the request was rejected or the channel was
closed

	
exit_status_ready()

	Return true if the remote process has exited and returned an exit
status. You may use this to poll the process status if you don’t
want to block in recv_exit_status. Note that the server may not
return an exit status in some cases (like bad servers).

	Returns:	True if recv_exit_status will return immediately, else
False.

New in version 1.7.3.

	
fileno()

	Returns an OS-level file descriptor which can be used for polling, but
but not for reading or writing. This is primarily to allow Python’s
select module to work.

The first time fileno is called on a channel, a pipe is created to
simulate real OS-level file descriptor (FD) behavior. Because of this,
two OS-level FDs are created, which will use up FDs faster than normal.
(You won’t notice this effect unless you have hundreds of channels
open at the same time.)

	Returns:	an OS-level file descriptor (int [https://docs.python.org/2.6/library/functions.html#int])

Warning

This method causes channel reads to be slightly less efficient.

	
get_id()

	Return the int [https://docs.python.org/2.6/library/functions.html#int] ID # for this channel.

The channel ID is unique across a Transport and usually a small
number. It’s also the number passed to
ServerInterface.check_channel_request when determining whether to
accept a channel request in server mode.

	
get_name()

	Get the name of this channel that was previously set by set_name.

	
get_pty(*args, **kwds)

	Request a pseudo-terminal from the server. This is usually used right
after creating a client channel, to ask the server to provide some
basic terminal semantics for a shell invoked with invoke_shell.
It isn’t necessary (or desirable) to call this method if you’re going
to execute a single command with exec_command.

	Parameters:	
	term (str [https://docs.python.org/2.6/library/functions.html#str]) – the terminal type to emulate (for example, 'vt100')

	width (int [https://docs.python.org/2.6/library/functions.html#int]) – width (in characters) of the terminal screen

	height (int [https://docs.python.org/2.6/library/functions.html#int]) – height (in characters) of the terminal screen

	width_pixels (int [https://docs.python.org/2.6/library/functions.html#int]) – width (in pixels) of the terminal screen

	height_pixels (int [https://docs.python.org/2.6/library/functions.html#int]) – height (in pixels) of the terminal screen

	Raises:	SSHException – if the request was rejected or the channel was closed

	
get_transport()

	Return the Transport associated with this channel.

	
getpeername()

	Return the address of the remote side of this Channel, if possible.

This simply wraps Transport.getpeername, used to provide enough of a
socket-like interface to allow asyncore to work. (asyncore likes to
call 'getpeername'.)

	
gettimeout()

	Returns the timeout in seconds (as a float) associated with socket
operations, or None if no timeout is set. This reflects the last
call to setblocking or settimeout.

	
invoke_shell(*args, **kwds)

	Request an interactive shell session on this channel. If the server
allows it, the channel will then be directly connected to the stdin,
stdout, and stderr of the shell.

Normally you would call get_pty before this, in which case the
shell will operate through the pty, and the channel will be connected
to the stdin and stdout of the pty.

When the shell exits, the channel will be closed and can’t be reused.
You must open a new channel if you wish to open another shell.

	Raises:	SSHException – if the request was rejected or the channel was
closed

	
invoke_subsystem(*args, **kwds)

	Request a subsystem on the server (for example, sftp). If the
server allows it, the channel will then be directly connected to the
requested subsystem.

When the subsystem finishes, the channel will be closed and can’t be
reused.

	Parameters:	subsystem (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the subsystem being requested.

	Raises:	SSHException – if the request was rejected or the channel was closed

	
makefile(*params)

	Return a file-like object associated with this channel. The optional
mode and bufsize arguments are interpreted the same way as by
the built-in file() function in Python.

	Returns:	ChannelFile object which can be used for Python file I/O.

	
makefile_stderr(*params)

	Return a file-like object associated with this channel’s stderr
stream. Only channels using exec_command or invoke_shell
without a pty will ever have data on the stderr stream.

The optional mode and bufsize arguments are interpreted the
same way as by the built-in file() function in Python. For a
client, it only makes sense to open this file for reading. For a
server, it only makes sense to open this file for writing.

	Returns:	ChannelFile object which can be used for Python file I/O.

New in version 1.1.

	
recv(nbytes)

	Receive data from the channel. The return value is a string
representing the data received. The maximum amount of data to be
received at once is specified by nbytes. If a string of length zero
is returned, the channel stream has closed.

	Parameters:	nbytes (int [https://docs.python.org/2.6/library/functions.html#int]) – maximum number of bytes to read.

	Returns:	received data, as a bytes

	Raises:	socket.timeout [https://docs.python.org/2.6/library/socket.html#socket.timeout] – if no data is ready before the timeout set by settimeout.

	
recv_exit_status()

	Return the exit status from the process on the server. This is
mostly useful for retrieving the results of an exec_command.
If the command hasn’t finished yet, this method will wait until
it does, or until the channel is closed. If no exit status is
provided by the server, -1 is returned.

Warning

In some situations, receiving remote output larger than the current
Transport or session’s window_size (e.g. that set by the
default_window_size kwarg for Transport.__init__) will cause
recv_exit_status to hang indefinitely if it is called prior to a
sufficiently large read (or if there are no threads
calling read in the background).

In these cases, ensuring that recv_exit_status is called after
read (or, again, using threads) can avoid the hang.

	Returns:	the exit code (as an int [https://docs.python.org/2.6/library/functions.html#int]) of the process on the server.

New in version 1.2.

	
recv_ready()

	Returns true if data is buffered and ready to be read from this
channel. A False result does not mean that the channel has closed;
it means you may need to wait before more data arrives.

	Returns:	True if a recv call on this channel would immediately return
at least one byte; False otherwise.

	
recv_stderr(nbytes)

	Receive data from the channel’s stderr stream. Only channels using
exec_command or invoke_shell without a pty will ever have data
on the stderr stream. The return value is a string representing the
data received. The maximum amount of data to be received at once is
specified by nbytes. If a string of length zero is returned, the
channel stream has closed.

	Parameters:	nbytes (int [https://docs.python.org/2.6/library/functions.html#int]) – maximum number of bytes to read.

	Returns:	received data as a str [https://docs.python.org/2.6/library/functions.html#str]

	Raises:	socket.timeout [https://docs.python.org/2.6/library/socket.html#socket.timeout] – if no data is ready before the timeout set by
settimeout.

New in version 1.1.

	
recv_stderr_ready()

	Returns true if data is buffered and ready to be read from this
channel’s stderr stream. Only channels using exec_command or
invoke_shell without a pty will ever have data on the stderr
stream.

	Returns:	True if a recv_stderr call on this channel would immediately
return at least one byte; False otherwise.

New in version 1.1.

	
request_forward_agent(*args, **kwds)

	Request for a forward SSH Agent on this channel.
This is only valid for an ssh-agent from OpenSSH !!!

	Parameters:	handler (function) – a required handler to use for incoming SSH Agent connections

	Returns:	True if we are ok, else False (at that time we always return ok)

	Raises:	SSHException in case of channel problem.

	
request_x11(*args, **kwds)

	Request an x11 session on this channel. If the server allows it,
further x11 requests can be made from the server to the client,
when an x11 application is run in a shell session.

From RFC 4254 [https://tools.ietf.org/html/rfc4254.html]:

It is RECOMMENDED that the 'x11 authentication cookie' that is
sent be a fake, random cookie, and that the cookie be checked and
replaced by the real cookie when a connection request is received.

If you omit the auth_cookie, a new secure random 128-bit value will be
generated, used, and returned. You will need to use this value to
verify incoming x11 requests and replace them with the actual local
x11 cookie (which requires some knowledge of the x11 protocol).

If a handler is passed in, the handler is called from another thread
whenever a new x11 connection arrives. The default handler queues up
incoming x11 connections, which may be retrieved using
Transport.accept. The handler’s calling signature is:

handler(channel: Channel, (address: str, port: int))

	Parameters:	
	screen_number (int [https://docs.python.org/2.6/library/functions.html#int]) – the x11 screen number (0, 10, etc.)

	auth_protocol (str [https://docs.python.org/2.6/library/functions.html#str]) – the name of the X11 authentication method used; if none is given,
"MIT-MAGIC-COOKIE-1" is used

	auth_cookie (str [https://docs.python.org/2.6/library/functions.html#str]) – hexadecimal string containing the x11 auth cookie; if none is
given, a secure random 128-bit value is generated

	single_connection (bool [https://docs.python.org/2.6/library/functions.html#bool]) – if True, only a single x11 connection will be forwarded (by
default, any number of x11 connections can arrive over this
session)

	handler (function) – an optional handler to use for incoming X11 connections

	Returns:	the auth_cookie used

	
resize_pty(*args, **kwds)

	Resize the pseudo-terminal. This can be used to change the width and
height of the terminal emulation created in a previous get_pty call.

	Parameters:	
	width (int [https://docs.python.org/2.6/library/functions.html#int]) – new width (in characters) of the terminal screen

	height (int [https://docs.python.org/2.6/library/functions.html#int]) – new height (in characters) of the terminal screen

	width_pixels (int [https://docs.python.org/2.6/library/functions.html#int]) – new width (in pixels) of the terminal screen

	height_pixels (int [https://docs.python.org/2.6/library/functions.html#int]) – new height (in pixels) of the terminal screen

	Raises:	SSHException – if the request was rejected or the channel was closed

	
send(s)

	Send data to the channel. Returns the number of bytes sent, or 0 if
the channel stream is closed. Applications are responsible for
checking that all data has been sent: if only some of the data was
transmitted, the application needs to attempt delivery of the remaining
data.

	Parameters:	s (str [https://docs.python.org/2.6/library/functions.html#str]) – data to send

	Returns:	number of bytes actually sent, as an int [https://docs.python.org/2.6/library/functions.html#int]

	Raises:	socket.timeout [https://docs.python.org/2.6/library/socket.html#socket.timeout] – if no data could be sent before the timeout set
by settimeout.

	
send_exit_status(status)

	Send the exit status of an executed command to the client. (This
really only makes sense in server mode.) Many clients expect to
get some sort of status code back from an executed command after
it completes.

	Parameters:	status (int [https://docs.python.org/2.6/library/functions.html#int]) – the exit code of the process

New in version 1.2.

	
send_ready()

	Returns true if data can be written to this channel without blocking.
This means the channel is either closed (so any write attempt would
return immediately) or there is at least one byte of space in the
outbound buffer. If there is at least one byte of space in the
outbound buffer, a send call will succeed immediately and return
the number of bytes actually written.

	Returns:	True if a send call on this channel would immediately succeed
or fail

	
send_stderr(s)

	Send data to the channel on the “stderr” stream. This is normally
only used by servers to send output from shell commands – clients
won’t use this. Returns the number of bytes sent, or 0 if the channel
stream is closed. Applications are responsible for checking that all
data has been sent: if only some of the data was transmitted, the
application needs to attempt delivery of the remaining data.

	Parameters:	s (str [https://docs.python.org/2.6/library/functions.html#str]) – data to send.

	Returns:	number of bytes actually sent, as an int [https://docs.python.org/2.6/library/functions.html#int].

	Raises:	socket.timeout [https://docs.python.org/2.6/library/socket.html#socket.timeout] – if no data could be sent before the timeout set by settimeout.

New in version 1.1.

	
sendall(s)

	Send data to the channel, without allowing partial results. Unlike
send, this method continues to send data from the given string until
either all data has been sent or an error occurs. Nothing is returned.

	Parameters:	s (str [https://docs.python.org/2.6/library/functions.html#str]) – data to send.

	Raises:	
	socket.timeout [https://docs.python.org/2.6/library/socket.html#socket.timeout] – if sending stalled for longer than the timeout set by settimeout.

	socket.error [https://docs.python.org/2.6/library/socket.html#socket.error] – if an error occurred before the entire string was sent.

Note

If the channel is closed while only part of the data has been
sent, there is no way to determine how much data (if any) was sent.
This is irritating, but identically follows Python’s API.

	
sendall_stderr(s)

	Send data to the channel’s “stderr” stream, without allowing partial
results. Unlike send_stderr, this method continues to send data
from the given string until all data has been sent or an error occurs.
Nothing is returned.

	Parameters:	s (str [https://docs.python.org/2.6/library/functions.html#str]) – data to send to the client as “stderr” output.

	Raises:	
	socket.timeout [https://docs.python.org/2.6/library/socket.html#socket.timeout] – if sending stalled for longer than the timeout set by settimeout.

	socket.error [https://docs.python.org/2.6/library/socket.html#socket.error] – if an error occurred before the entire string was sent.

New in version 1.1.

	
set_combine_stderr(combine)

	Set whether stderr should be combined into stdout on this channel.
The default is False, but in some cases it may be convenient to
have both streams combined.

If this is False, and exec_command is called (or invoke_shell
with no pty), output to stderr will not show up through the recv
and recv_ready calls. You will have to use recv_stderr and
recv_stderr_ready to get stderr output.

If this is True, data will never show up via recv_stderr or
recv_stderr_ready.

	Parameters:	combine (bool [https://docs.python.org/2.6/library/functions.html#bool]) – True if stderr output should be combined into stdout on this
channel.

	Returns:	the previous setting (a bool [https://docs.python.org/2.6/library/functions.html#bool]).

New in version 1.1.

	
set_name(name)

	Set a name for this channel. Currently it’s only used to set the name
of the channel in logfile entries. The name can be fetched with the
get_name method.

	Parameters:	name (str [https://docs.python.org/2.6/library/functions.html#str]) – new channel name

	
setblocking(blocking)

	Set blocking or non-blocking mode of the channel: if blocking is 0,
the channel is set to non-blocking mode; otherwise it’s set to blocking
mode. Initially all channels are in blocking mode.

In non-blocking mode, if a recv call doesn’t find any data, or if a
send call can’t immediately dispose of the data, an error exception
is raised. In blocking mode, the calls block until they can proceed. An
EOF condition is considered “immediate data” for recv, so if the
channel is closed in the read direction, it will never block.

chan.setblocking(0) is equivalent to chan.settimeout(0);
chan.setblocking(1) is equivalent to chan.settimeout(None).

	Parameters:	blocking (int [https://docs.python.org/2.6/library/functions.html#int]) – 0 to set non-blocking mode; non-0 to set blocking mode.

	
settimeout(timeout)

	Set a timeout on blocking read/write operations. The timeout
argument can be a nonnegative float expressing seconds, or None. If
a float is given, subsequent channel read/write operations will raise
a timeout exception if the timeout period value has elapsed before the
operation has completed. Setting a timeout of None disables
timeouts on socket operations.

chan.settimeout(0.0) is equivalent to chan.setblocking(0);
chan.settimeout(None) is equivalent to chan.setblocking(1).

	Parameters:	timeout (float [https://docs.python.org/2.6/library/functions.html#float]) – seconds to wait for a pending read/write operation before raising
socket.timeout, or None for no timeout.

	
shutdown(how)

	Shut down one or both halves of the connection. If how is 0,
further receives are disallowed. If how is 1, further sends
are disallowed. If how is 2, further sends and receives are
disallowed. This closes the stream in one or both directions.

	Parameters:	how (int [https://docs.python.org/2.6/library/functions.html#int]) –
	0 (stop receiving), 1 (stop sending), or 2 (stop receiving and

	sending).

	
shutdown_read()

	Shutdown the receiving side of this socket, closing the stream in
the incoming direction. After this call, future reads on this
channel will fail instantly. This is a convenience method, equivalent
to shutdown(0), for people who don’t make it a habit to
memorize unix constants from the 1970s.

New in version 1.2.

	
shutdown_write()

	Shutdown the sending side of this socket, closing the stream in
the outgoing direction. After this call, future writes on this
channel will fail instantly. This is a convenience method, equivalent
to shutdown(1), for people who don’t make it a habit to
memorize unix constants from the 1970s.

New in version 1.2.

	
class paramiko.channel.ChannelFile(channel, mode='r', bufsize=-1)

	A file-like wrapper around Channel. A ChannelFile is created by calling
Channel.makefile.

Warning

To correctly emulate the file object created from a socket’s makefile [https://docs.python.org/2.6/library/socket.html#socket.socket.makefile] method, a Channel and its
ChannelFile should be able to be closed or garbage-collected
independently. Currently, closing the ChannelFile does nothing but
flush the buffer.

	
__repr__()

	Returns a string representation of this object, for debugging.

	
paramiko.channel.open_only(func)

	Decorator for Channel methods which performs an openness check.

	Raises:	SSHException – If the wrapped method is called on an unopened Channel.

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

Client

SSH client & key policies

	
class paramiko.client.AutoAddPolicy

	Policy for automatically adding the hostname and new host key to the
local HostKeys object, and saving it. This is used by SSHClient.

	
class paramiko.client.MissingHostKeyPolicy

	Interface for defining the policy that SSHClient should use when the
SSH server’s hostname is not in either the system host keys or the
application’s keys. Pre-made classes implement policies for automatically
adding the key to the application’s HostKeys object (AutoAddPolicy),
and for automatically rejecting the key (RejectPolicy).

This function may be used to ask the user to verify the key, for example.

	
__weakref__

	list of weak references to the object (if defined)

	
missing_host_key(client, hostname, key)

	Called when an SSHClient receives a server key for a server that
isn’t in either the system or local HostKeys object. To accept
the key, simply return. To reject, raised an exception (which will
be passed to the calling application).

	
class paramiko.client.RejectPolicy

	Policy for automatically rejecting the unknown hostname & key. This is
used by SSHClient.

	
class paramiko.client.SSHClient

	A high-level representation of a session with an SSH server. This class
wraps Transport, Channel, and SFTPClient to take care of most
aspects of authenticating and opening channels. A typical use case is:

client = SSHClient()
client.load_system_host_keys()
client.connect('ssh.example.com')
stdin, stdout, stderr = client.exec_command('ls -l')

You may pass in explicit overrides for authentication and server host key
checking. The default mechanism is to try to use local key files or an
SSH agent (if one is running).

Instances of this class may be used as context managers.

New in version 1.6.

	
__init__()

	Create a new SSHClient.

	
close()

	Close this SSHClient and its underlying Transport.

Warning

Failure to do this may, in some situations, cause your Python
interpreter to hang at shutdown (often due to race conditions).
It’s good practice to close your client objects anytime you’re
done using them, instead of relying on garbage collection.

	
connect(hostname, port=22, username=None, password=None, pkey=None, key_filename=None, timeout=None, allow_agent=True, look_for_keys=True, compress=False, sock=None, gss_auth=False, gss_kex=False, gss_deleg_creds=True, gss_host=None, banner_timeout=None)

	Connect to an SSH server and authenticate to it. The server’s host key
is checked against the system host keys (see load_system_host_keys)
and any local host keys (load_host_keys). If the server’s hostname
is not found in either set of host keys, the missing host key policy
is used (see set_missing_host_key_policy). The default policy is
to reject the key and raise an SSHException.

Authentication is attempted in the following order of priority:

	The pkey or key_filename passed in (if any)

	Any key we can find through an SSH agent

	Any “id_rsa”, “id_dsa” or “id_ecdsa” key discoverable in
~/.ssh/

	Plain username/password auth, if a password was given

If a private key requires a password to unlock it, and a password is
passed in, that password will be used to attempt to unlock the key.

	Parameters:	
	hostname (str [https://docs.python.org/2.6/library/functions.html#str]) – the server to connect to

	port (int [https://docs.python.org/2.6/library/functions.html#int]) – the server port to connect to

	username (str [https://docs.python.org/2.6/library/functions.html#str]) – the username to authenticate as (defaults to the current local
username)

	password (str [https://docs.python.org/2.6/library/functions.html#str]) – a password to use for authentication or for unlocking a private key

	pkey (PKey) – an optional private key to use for authentication

	key_filename (str [https://docs.python.org/2.6/library/functions.html#str]) – the filename, or list of filenames, of optional private key(s) to
try for authentication

	timeout (float [https://docs.python.org/2.6/library/functions.html#float]) – an optional timeout (in seconds) for the TCP connect

	allow_agent (bool [https://docs.python.org/2.6/library/functions.html#bool]) – set to False to disable connecting to the SSH agent

	look_for_keys (bool [https://docs.python.org/2.6/library/functions.html#bool]) – set to False to disable searching for discoverable private key
files in ~/.ssh/

	compress (bool [https://docs.python.org/2.6/library/functions.html#bool]) – set to True to turn on compression

	sock (socket [https://docs.python.org/2.6/library/socket.html#module-socket]) – an open socket or socket-like object (such as a Channel) to use
for communication to the target host

	gss_auth (bool [https://docs.python.org/2.6/library/functions.html#bool]) – True if you want to use GSS-API authentication

	gss_kex (bool [https://docs.python.org/2.6/library/functions.html#bool]) – Perform GSS-API Key Exchange and user authentication

	gss_deleg_creds (bool [https://docs.python.org/2.6/library/functions.html#bool]) – Delegate GSS-API client credentials or not

	gss_host (str [https://docs.python.org/2.6/library/functions.html#str]) – The targets name in the kerberos database. default: hostname

	banner_timeout (float [https://docs.python.org/2.6/library/functions.html#float]) – an optional timeout (in seconds) to wait
for the SSH banner to be presented.

	Raises:	
	BadHostKeyException – if the server’s host key could not be
verified

	AuthenticationException – if authentication failed

	SSHException – if there was any other error connecting or
establishing an SSH session

	socket.error [https://docs.python.org/2.6/library/socket.html#socket.error] – if a socket error occurred while connecting

Changed in version 1.15: Added the banner_timeout, gss_auth, gss_kex,
gss_deleg_creds and gss_host arguments.

	
exec_command(command, bufsize=-1, timeout=None, get_pty=False)

	Execute a command on the SSH server. A new Channel is opened and
the requested command is executed. The command’s input and output
streams are returned as Python file-like objects representing
stdin, stdout, and stderr.

	Parameters:	
	command (str [https://docs.python.org/2.6/library/functions.html#str]) – the command to execute

	bufsize (int [https://docs.python.org/2.6/library/functions.html#int]) – interpreted the same way as by the built-in file() function in
Python

	timeout (int [https://docs.python.org/2.6/library/functions.html#int]) – set command’s channel timeout. See Channel.settimeout.settimeout

	Returns:	the stdin, stdout, and stderr of the executing command, as a
3-tuple

	Raises:	SSHException – if the server fails to execute the command

	
get_host_keys()

	Get the local HostKeys object. This can be used to examine the
local host keys or change them.

	Returns:	the local host keys as a HostKeys object.

	
get_transport()

	Return the underlying Transport object for this SSH connection.
This can be used to perform lower-level tasks, like opening specific
kinds of channels.

	Returns:	the Transport for this connection

	
invoke_shell(term='vt100', width=80, height=24, width_pixels=0, height_pixels=0)

	Start an interactive shell session on the SSH server. A new Channel
is opened and connected to a pseudo-terminal using the requested
terminal type and size.

	Parameters:	
	term (str [https://docs.python.org/2.6/library/functions.html#str]) – the terminal type to emulate (for example, "vt100")

	width (int [https://docs.python.org/2.6/library/functions.html#int]) – the width (in characters) of the terminal window

	height (int [https://docs.python.org/2.6/library/functions.html#int]) – the height (in characters) of the terminal window

	width_pixels (int [https://docs.python.org/2.6/library/functions.html#int]) – the width (in pixels) of the terminal window

	height_pixels (int [https://docs.python.org/2.6/library/functions.html#int]) – the height (in pixels) of the terminal window

	Returns:	a new Channel connected to the remote shell

	Raises:	SSHException – if the server fails to invoke a shell

	
load_host_keys(filename)

	Load host keys from a local host-key file. Host keys read with this
method will be checked after keys loaded via load_system_host_keys,
but will be saved back by save_host_keys (so they can be modified).
The missing host key policy AutoAddPolicy adds keys to this set and
saves them, when connecting to a previously-unknown server.

This method can be called multiple times. Each new set of host keys
will be merged with the existing set (new replacing old if there are
conflicts). When automatically saving, the last hostname is used.

	Parameters:	filename (str [https://docs.python.org/2.6/library/functions.html#str]) – the filename to read

	Raises:	IOError – if the filename could not be read

	
load_system_host_keys(filename=None)

	Load host keys from a system (read-only) file. Host keys read with
this method will not be saved back by save_host_keys.

This method can be called multiple times. Each new set of host keys
will be merged with the existing set (new replacing old if there are
conflicts).

If filename is left as None, an attempt will be made to read
keys from the user’s local “known hosts” file, as used by OpenSSH,
and no exception will be raised if the file can’t be read. This is
probably only useful on posix.

	Parameters:	filename (str [https://docs.python.org/2.6/library/functions.html#str]) – the filename to read, or None

	Raises:	IOError – if a filename was provided and the file could not be read

	
open_sftp()

	Open an SFTP session on the SSH server.

	Returns:	a new SFTPClient session object

	
save_host_keys(filename)

	Save the host keys back to a file. Only the host keys loaded with
load_host_keys (plus any added directly) will be saved – not any
host keys loaded with load_system_host_keys.

	Parameters:	filename (str [https://docs.python.org/2.6/library/functions.html#str]) – the filename to save to

	Raises:	IOError – if the file could not be written

	
set_log_channel(name)

	Set the channel for logging. The default is "paramiko.transport"
but it can be set to anything you want.

	Parameters:	name (str [https://docs.python.org/2.6/library/functions.html#str]) – new channel name for logging

	
set_missing_host_key_policy(policy)

	Set policy to use when connecting to servers without a known host key.

Specifically:

	A policy is an instance of a “policy class”, namely some subclass
of MissingHostKeyPolicy such as RejectPolicy (the default),
AutoAddPolicy, WarningPolicy, or a user-created subclass.

Note

This method takes class instances, not classes themselves.
Thus it must be called as e.g.
.set_missing_host_key_policy(WarningPolicy()) and not
.set_missing_host_key_policy(WarningPolicy).

	A host key is known when it appears in the client object’s cached
host keys structures (those manipulated by load_system_host_keys
and/or load_host_keys).

	Parameters:	policy (MissingHostKeyPolicy) – the policy to use when receiving a host key from a
previously-unknown server

	
class paramiko.client.WarningPolicy

	Policy for logging a Python-style warning for an unknown host key, but
accepting it. This is used by SSHClient.

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

Message

Implementation of an SSH2 “message”.

	
class paramiko.message.Message(content=None)

	An SSH2 message is a stream of bytes that encodes some combination of
strings, integers, bools, and infinite-precision integers (known in Python
as longs). This class builds or breaks down such a byte stream.

Normally you don’t need to deal with anything this low-level, but it’s
exposed for people implementing custom extensions, or features that
paramiko doesn’t support yet.

	
__init__(content=None)

	Create a new SSH2 message.

	Parameters:	content (str [https://docs.python.org/2.6/library/functions.html#str]) – the byte stream to use as the message content (passed in only when
decomposing a message).

	
__repr__()

	Returns a string representation of this object, for debugging.

	
__str__()

	Return the byte stream content of this message, as a string/bytes obj.

	
__weakref__

	list of weak references to the object (if defined)

	
add(*seq)

	Add a sequence of items to the stream. The values are encoded based
on their type: str, int, bool, list, or long.

Warning

Longs are encoded non-deterministically. Don’t use this method.

	Parameters:	seq – the sequence of items

	
add_adaptive_int(n)

	Add an integer to the stream.

	Parameters:	n (int [https://docs.python.org/2.6/library/functions.html#int]) – integer to add

	
add_boolean(b)

	Add a boolean value to the stream.

	Parameters:	b (bool [https://docs.python.org/2.6/library/functions.html#bool]) – boolean value to add

	
add_byte(b)

	Write a single byte to the stream, without any formatting.

	Parameters:	b (str [https://docs.python.org/2.6/library/functions.html#str]) – byte to add

	
add_bytes(b)

	Write bytes to the stream, without any formatting.

	Parameters:	b (str [https://docs.python.org/2.6/library/functions.html#str]) – bytes to add

	
add_int(n)

	Add an integer to the stream.

	Parameters:	n (int [https://docs.python.org/2.6/library/functions.html#int]) – integer to add

	
add_int64(n)

	Add a 64-bit int to the stream.

	Parameters:	n (long [https://docs.python.org/2.6/library/functions.html#long]) – long int to add

	
add_list(l)

	Add a list of strings to the stream. They are encoded identically to
a single string of values separated by commas. (Yes, really, that’s
how SSH2 does it.)

	Parameters:	l (list [https://docs.python.org/2.6/library/functions.html#list]) – list of strings to add

	
add_mpint(z)

	Add a long int to the stream, encoded as an infinite-precision
integer. This method only works on positive numbers.

	Parameters:	z (long [https://docs.python.org/2.6/library/functions.html#long]) – long int to add

	
add_string(s)

	Add a string to the stream.

	Parameters:	s (str [https://docs.python.org/2.6/library/functions.html#str]) – string to add

	
asbytes()

	Return the byte stream content of this Message, as bytes.

	
get_adaptive_int()

	Fetch an int from the stream.

	Returns:	a 32-bit unsigned int [https://docs.python.org/2.6/library/functions.html#int].

	
get_binary()

	Fetch a string from the stream. This could be a byte string and may
contain unprintable characters. (It’s not unheard of for a string to
contain another byte-stream Message.)

	
get_boolean()

	Fetch a boolean from the stream.

	
get_byte()

	Return the next byte of the message, without decomposing it. This
is equivalent to get_bytes(1).

	Returns:	the next (str [https://docs.python.org/2.6/library/functions.html#str]) byte of the message, or '\' if there aren’t
any bytes remaining.

	
get_bytes(n)

	Return the next n bytes of the message (as a str [https://docs.python.org/2.6/library/functions.html#str]), without
decomposing into an int, decoded string, etc. Just the raw bytes are
returned. Returns a string of n zero bytes if there weren’t n
bytes remaining in the message.

	
get_int()

	Fetch an int from the stream.

	
get_int64()

	Fetch a 64-bit int from the stream.

	Returns:	a 64-bit unsigned integer (long [https://docs.python.org/2.6/library/functions.html#long]).

	
get_list()

	Fetch a list [https://docs.python.org/2.6/library/functions.html#list] of strings [https://docs.python.org/2.6/library/functions.html#str] from the stream.

These are trivially encoded as comma-separated values in a string.

	
get_mpint()

	Fetch a long int (mpint) from the stream.

	Returns:	an arbitrary-length integer (long [https://docs.python.org/2.6/library/functions.html#long]).

	
get_remainder()

	Return the bytes (as a str [https://docs.python.org/2.6/library/functions.html#str]) of this message that haven’t already been
parsed and returned.

	
get_so_far()

	Returns the str [https://docs.python.org/2.6/library/functions.html#str] bytes of this message that have been parsed and
returned. The string passed into a message’s constructor can be
regenerated by concatenating get_so_far and get_remainder.

	
get_string()

	Fetch a str [https://docs.python.org/2.6/library/functions.html#str] from the stream. This could be a byte string and may
contain unprintable characters. (It’s not unheard of for a string to
contain another byte-stream message.)

	
get_text()

	Fetch a Unicode string from the stream.

	
rewind()

	Rewind the message to the beginning as if no items had been parsed
out of it yet.

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

Packetizer

Packet handling

	
class paramiko.packet.Packetizer(socket)

	Implementation of the base SSH packet protocol.

	
__weakref__

	list of weak references to the object (if defined)

	
complete_handshake()

	Tells Packetizer that the handshake has completed.

	
handshake_timed_out()

	Checks if the handshake has timed out.

If start_handshake wasn’t called before the call to this function,
the return value will always be False [https://docs.python.org/2.6/library/constants.html#False]. If the handshake completed
before a timeout was reached, the return value will be False [https://docs.python.org/2.6/library/constants.html#False]

	Returns:	handshake time out status, as a bool [https://docs.python.org/2.6/library/functions.html#bool]

	
need_rekey()

	Returns True if a new set of keys needs to be negotiated. This
will be triggered during a packet read or write, so it should be
checked after every read or write, or at least after every few.

	
read_all(n, check_rekey=False)

	Read as close to N bytes as possible, blocking as long as necessary.

	Parameters:	n (int [https://docs.python.org/2.6/library/functions.html#int]) – number of bytes to read

	Returns:	the data read, as a str [https://docs.python.org/2.6/library/functions.html#str]

	Raises:	EOFError – if the socket was closed before all the bytes could be read

	
read_message()

	Only one thread should ever be in this function (no other locking is
done).

	Raises:	
	SSHException – if the packet is mangled

	NeedRekeyException – if the transport should rekey

	
readline(timeout)

	Read a line from the socket. We assume no data is pending after the
line, so it’s okay to attempt large reads.

	
send_message(data)

	Write a block of data using the current cipher, as an SSH block.

	
set_inbound_cipher(block_engine, block_size, mac_engine, mac_size, mac_key)

	Switch inbound data cipher.

	
set_keepalive(interval, callback)

	Turn on/off the callback keepalive. If interval seconds pass with
no data read from or written to the socket, the callback will be
executed and the timer will be reset.

	
set_log(log)

	Set the Python log object to use for logging.

	
set_outbound_cipher(block_engine, block_size, mac_engine, mac_size, mac_key, sdctr=False)

	Switch outbound data cipher.

	
start_handshake(timeout)

	Tells Packetizer that the handshake process started.
Starts a book keeping timer that can signal a timeout in the
handshake process.

	Parameters:	timeout (float [https://docs.python.org/2.6/library/functions.html#float]) – amount of seconds to wait before timing out

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

Transport

Core protocol implementation

	
class paramiko.transport.SecurityOptions(transport)

	Simple object containing the security preferences of an ssh transport.
These are tuples of acceptable ciphers, digests, key types, and key
exchange algorithms, listed in order of preference.

Changing the contents and/or order of these fields affects the underlying
Transport (but only if you change them before starting the session).
If you try to add an algorithm that paramiko doesn’t recognize,
ValueError will be raised. If you try to assign something besides a
tuple to one of the fields, TypeError will be raised.

	
__repr__()

	Returns a string representation of this object, for debugging.

	
ciphers

	Symmetric encryption ciphers

	
compression

	Compression algorithms

	
digests

	Digest (one-way hash) algorithms

	
kex

	Key exchange algorithms

	
key_types

	Public-key algorithms

	
class paramiko.transport.Transport(sock, default_window_size=2097152, default_max_packet_size=32768, gss_kex=False, gss_deleg_creds=True)

	An SSH Transport attaches to a stream (usually a socket), negotiates an
encrypted session, authenticates, and then creates stream tunnels, called
channels, across the session. Multiple channels can be
multiplexed across a single session (and often are, in the case of port
forwardings).

Instances of this class may be used as context managers.

	
__init__(sock, default_window_size=2097152, default_max_packet_size=32768, gss_kex=False, gss_deleg_creds=True)

	Create a new SSH session over an existing socket, or socket-like
object. This only creates the Transport object; it doesn’t begin the
SSH session yet. Use connect or start_client to begin a client
session, or start_server to begin a server session.

If the object is not actually a socket, it must have the following
methods:

	send(str): Writes from 1 to len(str) bytes, and returns an
int representing the number of bytes written. Returns
0 or raises EOFError if the stream has been closed.

	recv(int): Reads from 1 to int bytes and returns them as a
string. Returns 0 or raises EOFError if the stream has been
closed.

	close(): Closes the socket.

	settimeout(n): Sets a (float) timeout on I/O operations.

For ease of use, you may also pass in an address (as a tuple) or a host
string as the sock argument. (A host string is a hostname with an
optional port (separated by ":") which will be converted into a
tuple of (hostname, port).) A socket will be connected to this
address and used for communication. Exceptions from the socket
call may be thrown in this case.

Note

Modifying the the window and packet sizes might have adverse
effects on your channels created from this transport. The default
values are the same as in the OpenSSH code base and have been
battle tested.

	Parameters:	
	sock (socket [https://docs.python.org/2.6/library/socket.html#module-socket]) – a socket or socket-like object to create the session over.

	default_window_size (int [https://docs.python.org/2.6/library/functions.html#int]) – sets the default window size on the transport. (defaults to
2097152)

	default_max_packet_size (int [https://docs.python.org/2.6/library/functions.html#int]) – sets the default max packet size on the transport. (defaults to
32768)

Changed in version 1.15: Added the default_window_size and default_max_packet_size
arguments.

	
__repr__()

	Returns a string representation of this object, for debugging.

	
accept(timeout=None)

	Return the next channel opened by the client over this transport, in
server mode. If no channel is opened before the given timeout, None
is returned.

	Parameters:	timeout (int [https://docs.python.org/2.6/library/functions.html#int]) – seconds to wait for a channel, or None to wait forever

	Returns:	a new Channel opened by the client

	
add_server_key(key)

	Add a host key to the list of keys used for server mode. When behaving
as a server, the host key is used to sign certain packets during the
SSH2 negotiation, so that the client can trust that we are who we say
we are. Because this is used for signing, the key must contain private
key info, not just the public half. Only one key of each type (RSA or
DSS) is kept.

	Parameters:	key (PKey) – the host key to add, usually an RSAKey or DSSKey.

	
atfork()

	Terminate this Transport without closing the session. On posix
systems, if a Transport is open during process forking, both parent
and child will share the underlying socket, but only one process can
use the connection (without corrupting the session). Use this method
to clean up a Transport object without disrupting the other process.

New in version 1.5.3.

	
auth_gssapi_keyex(username)

	Authenticate to the server with GSS-API/SSPI if GSS-API kex is in use.

	Parameters:	username (str [https://docs.python.org/2.6/library/functions.html#str]) – The username to authenticate as.

	Returns:	a list [https://docs.python.org/2.6/library/functions.html#list] of auth types permissible for the next stage of
authentication (normally empty)

	Raises:	
	BadAuthenticationType – if GSS-API Key Exchange was not performed (and no event was passed
in)

	AuthenticationException – if the authentication failed (and no event was passed in)

	SSHException – if there was a network error

	
auth_gssapi_with_mic(username, gss_host, gss_deleg_creds)

	Authenticate to the Server using GSS-API / SSPI.

	Parameters:	
	username (str [https://docs.python.org/2.6/library/functions.html#str]) – The username to authenticate as

	gss_host (str [https://docs.python.org/2.6/library/functions.html#str]) – The target host

	gss_deleg_creds (bool [https://docs.python.org/2.6/library/functions.html#bool]) – Delegate credentials or not

	Returns:	list of auth types permissible for the next stage of
authentication (normally empty)

	Return type:	list [https://docs.python.org/2.6/library/functions.html#list]

	Raises:	
	BadAuthenticationType – if gssapi-with-mic isn’t
allowed by the server (and no event was passed in)

	AuthenticationException – if the authentication failed (and no
event was passed in)

	SSHException – if there was a network error

	
auth_interactive(username, handler, submethods='')

	Authenticate to the server interactively. A handler is used to answer
arbitrary questions from the server. On many servers, this is just a
dumb wrapper around PAM.

This method will block until the authentication succeeds or fails,
peroidically calling the handler asynchronously to get answers to
authentication questions. The handler may be called more than once
if the server continues to ask questions.

The handler is expected to be a callable that will handle calls of the
form: handler(title, instructions, prompt_list). The title is
meant to be a dialog-window title, and the instructions are user
instructions (both are strings). prompt_list will be a list of
prompts, each prompt being a tuple of (str, bool). The string is
the prompt and the boolean indicates whether the user text should be
echoed.

A sample call would thus be:
handler('title', 'instructions', [('Password:', False)]).

The handler should return a list or tuple of answers to the server’s
questions.

If the server requires multi-step authentication (which is very rare),
this method will return a list of auth types permissible for the next
step. Otherwise, in the normal case, an empty list is returned.

	Parameters:	
	username (str [https://docs.python.org/2.6/library/functions.html#str]) – the username to authenticate as

	handler (callable [https://docs.python.org/2.6/library/functions.html#callable]) – a handler for responding to server questions

	submethods (str [https://docs.python.org/2.6/library/functions.html#str]) – a string list of desired submethods (optional)

	Returns:	list [https://docs.python.org/2.6/library/functions.html#list] of auth types permissible for the next stage of
authentication (normally empty).

	Raises:	
	BadAuthenticationType – if public-key authentication isn’t
allowed by the server for this user

	AuthenticationException – if the authentication failed

	SSHException – if there was a network error

New in version 1.5.

	
auth_interactive_dumb(username, handler=None, submethods='')

	Autenticate to the server interactively but dumber.
Just print the prompt and / or instructions to stdout and send back
the response. This is good for situations where partial auth is
achieved by key and then the user has to enter a 2fac token.

	
auth_none(username)

	Try to authenticate to the server using no authentication at all.
This will almost always fail. It may be useful for determining the
list of authentication types supported by the server, by catching the
BadAuthenticationType exception raised.

	Parameters:	username (str [https://docs.python.org/2.6/library/functions.html#str]) – the username to authenticate as

	Returns:	list [https://docs.python.org/2.6/library/functions.html#list] of auth types permissible for the next stage of
authentication (normally empty)

	Raises:	
	BadAuthenticationType – if “none” authentication isn’t allowed
by the server for this user

	SSHException – if the authentication failed due to a network
error

New in version 1.5.

	
auth_password(username, password, event=None, fallback=True)

	Authenticate to the server using a password. The username and password
are sent over an encrypted link.

If an event is passed in, this method will return immediately, and
the event will be triggered once authentication succeeds or fails. On
success, is_authenticated will return True. On failure, you may
use get_exception to get more detailed error information.

Since 1.1, if no event is passed, this method will block until the
authentication succeeds or fails. On failure, an exception is raised.
Otherwise, the method simply returns.

Since 1.5, if no event is passed and fallback is True (the
default), if the server doesn’t support plain password authentication
but does support so-called “keyboard-interactive” mode, an attempt
will be made to authenticate using this interactive mode. If it fails,
the normal exception will be thrown as if the attempt had never been
made. This is useful for some recent Gentoo and Debian distributions,
which turn off plain password authentication in a misguided belief
that interactive authentication is “more secure”. (It’s not.)

If the server requires multi-step authentication (which is very rare),
this method will return a list of auth types permissible for the next
step. Otherwise, in the normal case, an empty list is returned.

	Parameters:	
	username (str [https://docs.python.org/2.6/library/functions.html#str]) – the username to authenticate as

	password (basestring [https://docs.python.org/2.6/library/functions.html#basestring]) – the password to authenticate with

	event (threading.Event [https://docs.python.org/2.6/library/threading.html#threading.Event]) – an event to trigger when the authentication attempt is complete
(whether it was successful or not)

	fallback (bool [https://docs.python.org/2.6/library/functions.html#bool]) – True if an attempt at an automated “interactive” password auth
should be made if the server doesn’t support normal password auth

	Returns:	list [https://docs.python.org/2.6/library/functions.html#list] of auth types permissible for the next stage of
authentication (normally empty)

	Raises:	
	BadAuthenticationType – if password authentication isn’t
allowed by the server for this user (and no event was passed in)

	AuthenticationException – if the authentication failed (and no
event was passed in)

	SSHException – if there was a network error

	
auth_publickey(username, key, event=None)

	Authenticate to the server using a private key. The key is used to
sign data from the server, so it must include the private part.

If an event is passed in, this method will return immediately, and
the event will be triggered once authentication succeeds or fails. On
success, is_authenticated will return True. On failure, you may
use get_exception to get more detailed error information.

Since 1.1, if no event is passed, this method will block until the
authentication succeeds or fails. On failure, an exception is raised.
Otherwise, the method simply returns.

If the server requires multi-step authentication (which is very rare),
this method will return a list of auth types permissible for the next
step. Otherwise, in the normal case, an empty list is returned.

	Parameters:	
	username (str [https://docs.python.org/2.6/library/functions.html#str]) – the username to authenticate as

	key (PKey) – the private key to authenticate with

	event (threading.Event [https://docs.python.org/2.6/library/threading.html#threading.Event]) – an event to trigger when the authentication attempt is complete
(whether it was successful or not)

	Returns:	list [https://docs.python.org/2.6/library/functions.html#list] of auth types permissible for the next stage of
authentication (normally empty)

	Raises:	
	BadAuthenticationType – if public-key authentication isn’t
allowed by the server for this user (and no event was passed in)

	AuthenticationException – if the authentication failed (and no
event was passed in)

	SSHException – if there was a network error

	
cancel_port_forward(address, port)

	Ask the server to cancel a previous port-forwarding request. No more
connections to the given address & port will be forwarded across this
ssh connection.

	Parameters:	
	address (str [https://docs.python.org/2.6/library/functions.html#str]) – the address to stop forwarding

	port (int [https://docs.python.org/2.6/library/functions.html#int]) – the port to stop forwarding

	
close()

	Close this session, and any open channels that are tied to it.

	
connect(hostkey=None, username='', password=None, pkey=None, gss_host=None, gss_auth=False, gss_kex=False, gss_deleg_creds=True)

	Negotiate an SSH2 session, and optionally verify the server’s host key
and authenticate using a password or private key. This is a shortcut
for start_client, get_remote_server_key, and
Transport.auth_password or Transport.auth_publickey. Use those
methods if you want more control.

You can use this method immediately after creating a Transport to
negotiate encryption with a server. If it fails, an exception will be
thrown. On success, the method will return cleanly, and an encrypted
session exists. You may immediately call open_channel or
open_session to get a Channel object, which is used for data
transfer.

Note

If you fail to supply a password or private key, this method may
succeed, but a subsequent open_channel or open_session call may
fail because you haven’t authenticated yet.

	Parameters:	
	hostkey (PKey) – the host key expected from the server, or None if you don’t
want to do host key verification.

	username (str [https://docs.python.org/2.6/library/functions.html#str]) – the username to authenticate as.

	password (str [https://docs.python.org/2.6/library/functions.html#str]) – a password to use for authentication, if you want to use password
authentication; otherwise None.

	pkey (PKey) – a private key to use for authentication, if you want to use private
key authentication; otherwise None.

	gss_host (str [https://docs.python.org/2.6/library/functions.html#str]) – The target’s name in the kerberos database. Default: hostname

	gss_auth (bool [https://docs.python.org/2.6/library/functions.html#bool]) – True if you want to use GSS-API authentication.

	gss_kex (bool [https://docs.python.org/2.6/library/functions.html#bool]) – Perform GSS-API Key Exchange and user authentication.

	gss_deleg_creds (bool [https://docs.python.org/2.6/library/functions.html#bool]) – Whether to delegate GSS-API client credentials.

	Raises:	SSHException – if the SSH2 negotiation fails, the host key
supplied by the server is incorrect, or authentication fails.

	
get_banner()

	Return the banner supplied by the server upon connect. If no banner is
supplied, this method returns None.

	Returns:	server supplied banner (str [https://docs.python.org/2.6/library/functions.html#str]), or None.

New in version 1.13.

	
get_exception()

	Return any exception that happened during the last server request.
This can be used to fetch more specific error information after using
calls like start_client. The exception (if any) is cleared after
this call.

	Returns:	an exception, or None if there is no stored exception.

New in version 1.1.

	
get_hexdump()

	Return True if the transport is currently logging hex dumps of
protocol traffic.

	Returns:	True if hex dumps are being logged, else False.

New in version 1.4.

	
get_log_channel()

	Return the channel name used for this transport’s logging.

	Returns:	channel name as a str [https://docs.python.org/2.6/library/functions.html#str]

New in version 1.2.

	
get_remote_server_key()

	Return the host key of the server (in client mode).

Note

Previously this call returned a tuple of (key type, key
string). You can get the same effect by calling PKey.get_name
for the key type, and str(key) for the key string.

	Raises:	SSHException – if no session is currently active.

	Returns:	public key (PKey) of the remote server

	
get_security_options()

	Return a SecurityOptions object which can be used to tweak the
encryption algorithms this transport will permit (for encryption,
digest/hash operations, public keys, and key exchanges) and the order
of preference for them.

	
get_server_key()

	Return the active host key, in server mode. After negotiating with the
client, this method will return the negotiated host key. If only one
type of host key was set with add_server_key, that’s the only key
that will ever be returned. But in cases where you have set more than
one type of host key (for example, an RSA key and a DSS key), the key
type will be negotiated by the client, and this method will return the
key of the type agreed on. If the host key has not been negotiated
yet, None is returned. In client mode, the behavior is undefined.

	Returns:	host key (PKey) of the type negotiated by the client, or
None.

	
get_username()

	Return the username this connection is authenticated for. If the
session is not authenticated (or authentication failed), this method
returns None.

	Returns:	username that was authenticated (a str [https://docs.python.org/2.6/library/functions.html#str]), or None.

	
getpeername()

	Return the address of the remote side of this Transport, if possible.
This is effectively a wrapper around 'getpeername' on the underlying
socket. If the socket-like object has no 'getpeername' method,
then ("unknown", 0) is returned.

	Returns:	the address of the remote host, if known, as a (str, int)
tuple.

	
global_request(kind, data=None, wait=True)

	Make a global request to the remote host. These are normally
extensions to the SSH2 protocol.

	Parameters:	
	kind (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the request.

	data (tuple [https://docs.python.org/2.6/library/functions.html#tuple]) – an optional tuple containing additional data to attach to the
request.

	wait (bool [https://docs.python.org/2.6/library/functions.html#bool]) – True if this method should not return until a response is
received; False otherwise.

	Returns:	a Message containing possible additional data if the request was
successful (or an empty Message if wait was False);
None if the request was denied.

	
is_active()

	Return true if this session is active (open).

	Returns:	True if the session is still active (open); False if the session is
closed

	
is_authenticated()

	Return true if this session is active and authenticated.

	Returns:	True if the session is still open and has been authenticated
successfully; False if authentication failed and/or the session is
closed.

	
static load_server_moduli(filename=None)

	(optional)
Load a file of prime moduli for use in doing group-exchange key
negotiation in server mode. It’s a rather obscure option and can be
safely ignored.

In server mode, the remote client may request “group-exchange” key
negotiation, which asks the server to send a random prime number that
fits certain criteria. These primes are pretty difficult to compute,
so they can’t be generated on demand. But many systems contain a file
of suitable primes (usually named something like /etc/ssh/moduli).
If you call load_server_moduli and it returns True, then this
file of primes has been loaded and we will support “group-exchange” in
server mode. Otherwise server mode will just claim that it doesn’t
support that method of key negotiation.

	Parameters:	filename (str [https://docs.python.org/2.6/library/functions.html#str]) – optional path to the moduli file, if you happen to know that it’s
not in a standard location.

	Returns:	True if a moduli file was successfully loaded; False otherwise.

Note

This has no effect when used in client mode.

	
open_channel(kind, dest_addr=None, src_addr=None, window_size=None, max_packet_size=None, timeout=None)

	Request a new channel to the server. Channels are
socket-like objects used for the actual transfer of data across the
session. You may only request a channel after negotiating encryption
(using connect or start_client) and authenticating.

Note

Modifying the the window and packet sizes might have adverse
effects on the channel created. The default values are the same
as in the OpenSSH code base and have been battle tested.

	Parameters:	
	kind (str [https://docs.python.org/2.6/library/functions.html#str]) – the kind of channel requested (usually "session",
"forwarded-tcpip", "direct-tcpip", or "x11")

	dest_addr (tuple [https://docs.python.org/2.6/library/functions.html#tuple]) – the destination address (address + port tuple) of this port
forwarding, if kind is "forwarded-tcpip" or
"direct-tcpip" (ignored for other channel types)

	src_addr – the source address of this port forwarding, if
kind is "forwarded-tcpip", "direct-tcpip", or "x11"

	window_size (int [https://docs.python.org/2.6/library/functions.html#int]) – optional window size for this session.

	max_packet_size (int [https://docs.python.org/2.6/library/functions.html#int]) – optional max packet size for this session.

	timeout (float [https://docs.python.org/2.6/library/functions.html#float]) – optional timeout opening a channel, default 3600s (1h)

	Returns:	a new Channel on success

	Raises:	SSHException – if the request is rejected, the session ends
prematurely or there is a timeout openning a channel

Changed in version 1.15: Added the window_size and max_packet_size arguments.

	
open_forward_agent_channel()

	Request a new channel to the client, of type
"auth-agent@openssh.com".

This is just an alias for open_channel('auth-agent@openssh.com').

	Returns:	a new Channel

	Raises:	SSHException – if the request is rejected or the session ends prematurely

	
open_forwarded_tcpip_channel(src_addr, dest_addr)

	Request a new channel back to the client, of type "forwarded-tcpip".
This is used after a client has requested port forwarding, for sending
incoming connections back to the client.

	Parameters:	
	src_addr – originator’s address

	dest_addr – local (server) connected address

	
open_session(window_size=None, max_packet_size=None, timeout=None)

	Request a new channel to the server, of type "session". This is
just an alias for calling open_channel with an argument of
"session".

Note

Modifying the the window and packet sizes might have adverse
effects on the session created. The default values are the same
as in the OpenSSH code base and have been battle tested.

	Parameters:	
	window_size (int [https://docs.python.org/2.6/library/functions.html#int]) – optional window size for this session.

	max_packet_size (int [https://docs.python.org/2.6/library/functions.html#int]) – optional max packet size for this session.

	Returns:	a new Channel

	Raises:	SSHException – if the request is rejected or the session ends
prematurely

Changed in version 1.13.4/1.14.3/1.15.3: Added the timeout argument.

Changed in version 1.15: Added the window_size and max_packet_size arguments.

	
open_sftp_client()

	Create an SFTP client channel from an open transport. On success, an
SFTP session will be opened with the remote host, and a new
SFTPClient object will be returned.

	Returns:	a new SFTPClient referring to an sftp session (channel) across
this transport

	
open_x11_channel(src_addr=None)

	Request a new channel to the client, of type "x11". This
is just an alias for open_channel('x11', src_addr=src_addr).

	Parameters:	src_addr (tuple [https://docs.python.org/2.6/library/functions.html#tuple]) – the source address ((str, int)) of the x11 server (port is the
x11 port, ie. 6010)

	Returns:	a new Channel

	Raises:	SSHException – if the request is rejected or the session ends
prematurely

	
renegotiate_keys()

	Force this session to switch to new keys. Normally this is done
automatically after the session hits a certain number of packets or
bytes sent or received, but this method gives you the option of forcing
new keys whenever you want. Negotiating new keys causes a pause in
traffic both ways as the two sides swap keys and do computations. This
method returns when the session has switched to new keys.

	Raises:	SSHException – if the key renegotiation failed (which causes the
session to end)

	
request_port_forward(address, port, handler=None)

	Ask the server to forward TCP connections from a listening port on
the server, across this SSH session.

If a handler is given, that handler is called from a different thread
whenever a forwarded connection arrives. The handler parameters are:

handler(channel, (origin_addr, origin_port), (server_addr, server_port))

where server_addr and server_port are the address and port that
the server was listening on.

If no handler is set, the default behavior is to send new incoming
forwarded connections into the accept queue, to be picked up via
accept.

	Parameters:	
	address (str [https://docs.python.org/2.6/library/functions.html#str]) – the address to bind when forwarding

	port (int [https://docs.python.org/2.6/library/functions.html#int]) – the port to forward, or 0 to ask the server to allocate any port

	handler (callable [https://docs.python.org/2.6/library/functions.html#callable]) – optional handler for incoming forwarded connections, of the form
func(Channel, (str, int), (str, int)).

	Returns:	the port number (int [https://docs.python.org/2.6/library/functions.html#int]) allocated by the server

	Raises:	SSHException – if the server refused the TCP forward request

	
send_ignore(byte_count=None)

	Send a junk packet across the encrypted link. This is sometimes used
to add “noise” to a connection to confuse would-be attackers. It can
also be used as a keep-alive for long lived connections traversing
firewalls.

	Parameters:	byte_count (int [https://docs.python.org/2.6/library/functions.html#int]) – the number of random bytes to send in the payload of the ignored
packet – defaults to a random number from 10 to 41.

	
set_gss_host(gss_host)

	Setter for C{gss_host} if GSS-API Key Exchange is performed.

	Parameters:	gss_host (str [https://docs.python.org/2.6/library/functions.html#str]) – The targets name in the kerberos database
Default: The name of the host to connect to

	Return type:	Void

	
set_hexdump(hexdump)

	Turn on/off logging a hex dump of protocol traffic at DEBUG level in
the logs. Normally you would want this off (which is the default),
but if you are debugging something, it may be useful.

	Parameters:	hexdump (bool [https://docs.python.org/2.6/library/functions.html#bool]) – True to log protocol traffix (in hex) to the log; False
otherwise.

	
set_keepalive(interval)

	Turn on/off keepalive packets (default is off). If this is set, after
interval seconds without sending any data over the connection, a
“keepalive” packet will be sent (and ignored by the remote host). This
can be useful to keep connections alive over a NAT, for example.

	Parameters:	interval (int [https://docs.python.org/2.6/library/functions.html#int]) – seconds to wait before sending a keepalive packet (or
0 to disable keepalives).

	
set_log_channel(name)

	Set the channel for this transport’s logging. The default is
"paramiko.transport" but it can be set to anything you want. (See
the logging [https://docs.python.org/2.6/library/logging.html#module-logging] module for more info.) SSH Channels will log to a
sub-channel of the one specified.

	Parameters:	name (str [https://docs.python.org/2.6/library/functions.html#str]) – new channel name for logging

New in version 1.1.

	
set_subsystem_handler(name, handler, *larg, **kwarg)

	Set the handler class for a subsystem in server mode. If a request
for this subsystem is made on an open ssh channel later, this handler
will be constructed and called – see SubsystemHandler for more
detailed documentation.

Any extra parameters (including keyword arguments) are saved and
passed to the SubsystemHandler constructor later.

	Parameters:	
	name (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the subsystem.

	handler (class) – subclass of SubsystemHandler that handles this subsystem.

	
start_client(event=None)

	Negotiate a new SSH2 session as a client. This is the first step after
creating a new Transport. A separate thread is created for protocol
negotiation.

If an event is passed in, this method returns immediately. When
negotiation is done (successful or not), the given Event will
be triggered. On failure, is_active will return False.

(Since 1.4) If event is None, this method will not return until
negotation is done. On success, the method returns normally.
Otherwise an SSHException is raised.

After a successful negotiation, you will usually want to authenticate,
calling auth_password or
auth_publickey.

Note

connect is a simpler method for connecting as a client.

Note

After calling this method (or start_server or connect), you
should no longer directly read from or write to the original socket
object.

	Parameters:	event (threading.Event [https://docs.python.org/2.6/library/threading.html#threading.Event]) – an event to trigger when negotiation is complete (optional)

	Raises:	SSHException – if negotiation fails (and no event was passed
in)

	
start_server(event=None, server=None)

	Negotiate a new SSH2 session as a server. This is the first step after
creating a new Transport and setting up your server host key(s). A
separate thread is created for protocol negotiation.

If an event is passed in, this method returns immediately. When
negotiation is done (successful or not), the given Event will
be triggered. On failure, is_active will return False.

(Since 1.4) If event is None, this method will not return until
negotiation is done. On success, the method returns normally.
Otherwise an SSHException is raised.

After a successful negotiation, the client will need to authenticate.
Override the methods get_allowed_auths, check_auth_none, check_auth_password, and check_auth_publickey in the given server object
to control the authentication process.

After a successful authentication, the client should request to open a
channel. Override check_channel_request in the given server
object to allow channels to be opened.

Note

After calling this method (or start_client or connect), you
should no longer directly read from or write to the original socket
object.

	Parameters:	
	event (threading.Event [https://docs.python.org/2.6/library/threading.html#threading.Event]) – an event to trigger when negotiation is complete.

	server (ServerInterface) – an object used to perform authentication and create channels

	Raises:	SSHException – if negotiation fails (and no event was passed
in)

	
use_compression(compress=True)

	Turn on/off compression. This will only have an affect before starting
the transport (ie before calling connect, etc). By default,
compression is off since it negatively affects interactive sessions.

	Parameters:	compress (bool [https://docs.python.org/2.6/library/functions.html#bool]) – True to ask the remote client/server to compress traffic;
False to refuse compression

New in version 1.5.2.

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

SSH agents

SSH Agent interface

	
class paramiko.agent.Agent

	Client interface for using private keys from an SSH agent running on the
local machine. If an SSH agent is running, this class can be used to
connect to it and retrieve PKey objects which can be used when
attempting to authenticate to remote SSH servers.

Upon initialization, a session with the local machine’s SSH agent is
opened, if one is running. If no agent is running, initialization will
succeed, but get_keys will return an empty tuple.

	Raises:	SSHException – if an SSH agent is found, but speaks an incompatible protocol

	
close()

	Close the SSH agent connection.

	
get_keys()

	Return the list of keys available through the SSH agent, if any. If
no SSH agent was running (or it couldn’t be contacted), an empty list
will be returned.

	Returns:	a tuple of AgentKey objects representing keys available on the
SSH agent

	
class paramiko.agent.AgentClientProxy(chanRemote)

	Class proxying request as a client:

	client ask for a request_forward_agent()

	server creates a proxy and a fake SSH Agent

	server ask for establishing a connection when needed,
calling the forward_agent_handler at client side.

	the forward_agent_handler launch a thread for connecting
the remote fake agent and the local agent

	Communication occurs ...

	
close()

	Close the current connection and terminate the agent
Should be called manually

	
connect()

	Method automatically called by AgentProxyThread.run.

	
class paramiko.agent.AgentKey(agent, blob)

	Private key held in a local SSH agent. This type of key can be used for
authenticating to a remote server (signing). Most other key operations
work as expected.

	
can_sign()

	Return True if this key has the private part necessary for signing
data.

	
from_private_key(file_obj, password=None)

	Create a key object by reading a private key from a file (or file-like)
object. If the private key is encrypted and password is not
None, the given password will be used to decrypt the key (otherwise
PasswordRequiredException is thrown).

	Parameters:	
	file_obj – the file-like object to read from

	password (str [https://docs.python.org/2.6/library/functions.html#str]) – an optional password to use to decrypt the key, if it’s encrypted

	Returns:	a new PKey based on the given private key

	Raises:	
	IOError – if there was an error reading the key

	PasswordRequiredException – if the private key file is encrypted, and password is None

	SSHException – if the key file is invalid

	
from_private_key_file(filename, password=None)

	Create a key object by reading a private key file. If the private
key is encrypted and password is not None, the given password
will be used to decrypt the key (otherwise PasswordRequiredException
is thrown). Through the magic of Python, this factory method will
exist in all subclasses of PKey (such as RSAKey or DSSKey), but
is useless on the abstract PKey class.

	Parameters:	
	filename (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the file to read

	password (str [https://docs.python.org/2.6/library/functions.html#str]) – an optional password to use to decrypt the key file, if it’s
encrypted

	Returns:	a new PKey based on the given private key

	Raises:	
	IOError – if there was an error reading the file

	PasswordRequiredException – if the private key file is
encrypted, and password is None

	SSHException – if the key file is invalid

	
get_base64()

	Return a base64 string containing the public part of this key. Nothing
secret is revealed. This format is compatible with that used to store
public key files or recognized host keys.

	Returns:	a base64 string [https://docs.python.org/2.6/library/functions.html#str] containing the public part of the key.

	
get_bits()

	Return the number of significant bits in this key. This is useful
for judging the relative security of a key.

	Returns:	bits in the key (as an int [https://docs.python.org/2.6/library/functions.html#int])

	
get_fingerprint()

	Return an MD5 fingerprint of the public part of this key. Nothing
secret is revealed.

	Returns:	a 16-byte string [https://docs.python.org/2.6/library/functions.html#str] (binary) of the MD5 fingerprint, in SSH
format.

	
verify_ssh_sig(data, msg)

	Given a blob of data, and an SSH message representing a signature of
that data, verify that it was signed with this key.

	Parameters:	
	data (str [https://docs.python.org/2.6/library/functions.html#str]) – the data that was signed.

	msg (Message) – an SSH signature message

	Returns:	True if the signature verifies correctly; False otherwise.

	
write_private_key(file_obj, password=None)

	Write private key contents into a file (or file-like) object. If the
password is not None, the key is encrypted before writing.

	Parameters:	
	file_obj – the file-like object to write into

	password (str [https://docs.python.org/2.6/library/functions.html#str]) – an optional password to use to encrypt the key

	Raises:	
	IOError – if there was an error writing to the file

	SSHException – if the key is invalid

	
write_private_key_file(filename, password=None)

	Write private key contents into a file. If the password is not
None, the key is encrypted before writing.

	Parameters:	
	filename (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the file to write

	password (str [https://docs.python.org/2.6/library/functions.html#str]) – an optional password to use to encrypt the key file

	Raises:	
	IOError – if there was an error writing the file

	SSHException – if the key is invalid

	
class paramiko.agent.AgentLocalProxy(agent)

	Class to be used when wanting to ask a local SSH Agent being
asked from a remote fake agent (so use a unix socket for ex.)

	
daemon

	A boolean value indicating whether this thread is a daemon thread (True) or not (False).

This must be set before start() is called, otherwise RuntimeError is
raised. Its initial value is inherited from the creating thread; the
main thread is not a daemon thread and therefore all threads created in
the main thread default to daemon = False.

The entire Python program exits when no alive non-daemon threads are
left.

	
get_connection()

	Return a pair of socket object and string address.

May block!

	
ident

	Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the thread.get_ident() function. Thread
identifiers may be recycled when a thread exits and another thread is
created. The identifier is available even after the thread has exited.

	
isAlive()

	Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

	
is_alive()

	Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

	
join(timeout=None)

	Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates – either normally or through an unhandled exception
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
isAlive() after join() to decide whether a timeout happened – if the
thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception.

	
name

	A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The
initial name is set by the constructor.

	
start()

	Start the thread’s activity.

It must be called at most once per thread object. It arranges for the
object’s run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the
same thread object.

	
class paramiko.agent.AgentProxyThread(agent)

	Class in charge of communication between two channels.

	
daemon

	A boolean value indicating whether this thread is a daemon thread (True) or not (False).

This must be set before start() is called, otherwise RuntimeError is
raised. Its initial value is inherited from the creating thread; the
main thread is not a daemon thread and therefore all threads created in
the main thread default to daemon = False.

The entire Python program exits when no alive non-daemon threads are
left.

	
ident

	Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the thread.get_ident() function. Thread
identifiers may be recycled when a thread exits and another thread is
created. The identifier is available even after the thread has exited.

	
isAlive()

	Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

	
is_alive()

	Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

	
join(timeout=None)

	Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates – either normally or through an unhandled exception
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
isAlive() after join() to decide whether a timeout happened – if the
thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception.

	
name

	A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The
initial name is set by the constructor.

	
start()

	Start the thread’s activity.

It must be called at most once per thread object. It arranges for the
object’s run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the
same thread object.

	
class paramiko.agent.AgentRemoteProxy(agent, chan)

	Class to be used when wanting to ask a remote SSH Agent

	
daemon

	A boolean value indicating whether this thread is a daemon thread (True) or not (False).

This must be set before start() is called, otherwise RuntimeError is
raised. Its initial value is inherited from the creating thread; the
main thread is not a daemon thread and therefore all threads created in
the main thread default to daemon = False.

The entire Python program exits when no alive non-daemon threads are
left.

	
ident

	Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the thread.get_ident() function. Thread
identifiers may be recycled when a thread exits and another thread is
created. The identifier is available even after the thread has exited.

	
isAlive()

	Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

	
is_alive()

	Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

	
join(timeout=None)

	Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates – either normally or through an unhandled exception
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
isAlive() after join() to decide whether a timeout happened – if the
thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception.

	
name

	A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The
initial name is set by the constructor.

	
start()

	Start the thread’s activity.

It must be called at most once per thread object. It arranges for the
object’s run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the
same thread object.

	
class paramiko.agent.AgentRequestHandler(chanClient)

	Primary/default implementation of SSH agent forwarding functionality.

Simply instantiate this class, handing it a live command-executing session
object, and it will handle forwarding any local SSH agent processes it
finds.

For example:

Connect
client = SSHClient()
client.connect(host, port, username)
Obtain session
session = client.get_transport().open_session()
Forward local agent
AgentRequestHandler(session)
Commands executed after this point will see the forwarded agent on
the remote end.
session.exec_command("git clone https://my.git.repository/")

	
class paramiko.agent.AgentServerProxy(t)

	

	Parameters:	t (Transport) – Transport used for SSH Agent communication forwarding

	Raises:	SSHException – mostly if we lost the agent

	
close()

	Terminate the agent, clean the files, close connections
Should be called manually

	
get_env()

	Helper for the environnement under unix

	Returns:	a dict containing the SSH_AUTH_SOCK environnement variables

	
get_keys()

	Return the list of keys available through the SSH agent, if any. If
no SSH agent was running (or it couldn’t be contacted), an empty list
will be returned.

	Returns:	a tuple of AgentKey objects representing keys available on the
SSH agent

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

Host keys / known_hosts files

	
class paramiko.hostkeys.HostKeyEntry(hostnames=None, key=None)

	Representation of a line in an OpenSSH-style “known hosts” file.

	
classmethod from_line(line, lineno=None)

	Parses the given line of text to find the names for the host,
the type of key, and the key data. The line is expected to be in the
format used by the OpenSSH known_hosts file.

Lines are expected to not have leading or trailing whitespace.
We don’t bother to check for comments or empty lines. All of
that should be taken care of before sending the line to us.

	Parameters:	line (str [https://docs.python.org/2.6/library/functions.html#str]) – a line from an OpenSSH known_hosts file

	
to_line()

	Returns a string in OpenSSH known_hosts file format, or None if
the object is not in a valid state. A trailing newline is
included.

	
class paramiko.hostkeys.HostKeys(filename=None)

	Representation of an OpenSSH-style “known hosts” file. Host keys can be
read from one or more files, and then individual hosts can be looked up to
verify server keys during SSH negotiation.

A HostKeys object can be treated like a dict; any dict lookup is
equivalent to calling lookup.

New in version 1.5.3.

	
__init__(filename=None)

	Create a new HostKeys object, optionally loading keys from an OpenSSH
style host-key file.

	Parameters:	filename (str [https://docs.python.org/2.6/library/functions.html#str]) – filename to load host keys from, or None

	
add(hostname, keytype, key)

	Add a host key entry to the table. Any existing entry for a
(hostname, keytype) pair will be replaced.

	Parameters:	
	hostname (str [https://docs.python.org/2.6/library/functions.html#str]) – the hostname (or IP) to add

	keytype (str [https://docs.python.org/2.6/library/functions.html#str]) – key type ("ssh-rsa" or "ssh-dss")

	key (PKey) – the key to add

	
check(hostname, key)

	Return True if the given key is associated with the given hostname
in this dictionary.

	Parameters:	
	hostname (str [https://docs.python.org/2.6/library/functions.html#str]) – hostname (or IP) of the SSH server

	key (PKey) – the key to check

	Returns:	True if the key is associated with the hostname; else False

	
clear()

	Remove all host keys from the dictionary.

	
static hash_host(hostname, salt=None)

	Return a “hashed” form of the hostname, as used by OpenSSH when storing
hashed hostnames in the known_hosts file.

	Parameters:	
	hostname (str [https://docs.python.org/2.6/library/functions.html#str]) – the hostname to hash

	salt (str [https://docs.python.org/2.6/library/functions.html#str]) – optional salt to use when hashing (must be 20 bytes long)

	Returns:	the hashed hostname as a str [https://docs.python.org/2.6/library/functions.html#str]

	
load(filename)

	Read a file of known SSH host keys, in the format used by OpenSSH.
This type of file unfortunately doesn’t exist on Windows, but on
posix, it will usually be stored in
os.path.expanduser("~/.ssh/known_hosts").

If this method is called multiple times, the host keys are merged,
not cleared. So multiple calls to load will just call add,
replacing any existing entries and adding new ones.

	Parameters:	filename (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the file to read host keys from

	Raises:	IOError – if there was an error reading the file

	
lookup(hostname)

	Find a hostkey entry for a given hostname or IP. If no entry is found,
None is returned. Otherwise a dictionary of keytype to key is
returned. The keytype will be either "ssh-rsa" or "ssh-dss".

	Parameters:	hostname (str [https://docs.python.org/2.6/library/functions.html#str]) – the hostname (or IP) to lookup

	Returns:	dict of str [https://docs.python.org/2.6/library/functions.html#str] -> PKey keys associated with this host (or None)

	
save(filename)

	Save host keys into a file, in the format used by OpenSSH. The order of
keys in the file will be preserved when possible (if these keys were
loaded from a file originally). The single exception is that combined
lines will be split into individual key lines, which is arguably a bug.

	Parameters:	filename (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the file to write

	Raises:	IOError – if there was an error writing the file

New in version 1.6.1.

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

Key handling

Parent key class

Common API for all public keys.

	
class paramiko.pkey.PKey(msg=None, data=None)

	Base class for public keys.

	
__cmp__(other)

	Compare this key to another. Returns 0 if this key is equivalent to
the given key, or non-0 if they are different. Only the public parts
of the key are compared, so a public key will compare equal to its
corresponding private key.

	Parameters:	other (Pkey) – key to compare to.

	
__init__(msg=None, data=None)

	Create a new instance of this public key type. If msg is given,
the key’s public part(s) will be filled in from the message. If
data is given, the key’s public part(s) will be filled in from
the string.

	Parameters:	
	msg (Message) – an optional SSH Message containing a public key of this type.

	data (str [https://docs.python.org/2.6/library/functions.html#str]) – an optional string containing a public key of this type

	Raises:	SSHException – if a key cannot be created from the data or msg given, or
no key was passed in.

	
__weakref__

	list of weak references to the object (if defined)

	
asbytes()

	Return a string of an SSH Message made up of the public part(s) of
this key. This string is suitable for passing to __init__ to
re-create the key object later.

	
can_sign()

	Return True if this key has the private part necessary for signing
data.

	
classmethod from_private_key(file_obj, password=None)

	Create a key object by reading a private key from a file (or file-like)
object. If the private key is encrypted and password is not
None, the given password will be used to decrypt the key (otherwise
PasswordRequiredException is thrown).

	Parameters:	
	file_obj – the file-like object to read from

	password (str [https://docs.python.org/2.6/library/functions.html#str]) – an optional password to use to decrypt the key, if it’s encrypted

	Returns:	a new PKey based on the given private key

	Raises:	
	IOError – if there was an error reading the key

	PasswordRequiredException – if the private key file is encrypted, and password is None

	SSHException – if the key file is invalid

	
classmethod from_private_key_file(filename, password=None)

	Create a key object by reading a private key file. If the private
key is encrypted and password is not None, the given password
will be used to decrypt the key (otherwise PasswordRequiredException
is thrown). Through the magic of Python, this factory method will
exist in all subclasses of PKey (such as RSAKey or DSSKey), but
is useless on the abstract PKey class.

	Parameters:	
	filename (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the file to read

	password (str [https://docs.python.org/2.6/library/functions.html#str]) – an optional password to use to decrypt the key file, if it’s
encrypted

	Returns:	a new PKey based on the given private key

	Raises:	
	IOError – if there was an error reading the file

	PasswordRequiredException – if the private key file is
encrypted, and password is None

	SSHException – if the key file is invalid

	
get_base64()

	Return a base64 string containing the public part of this key. Nothing
secret is revealed. This format is compatible with that used to store
public key files or recognized host keys.

	Returns:	a base64 string [https://docs.python.org/2.6/library/functions.html#str] containing the public part of the key.

	
get_bits()

	Return the number of significant bits in this key. This is useful
for judging the relative security of a key.

	Returns:	bits in the key (as an int [https://docs.python.org/2.6/library/functions.html#int])

	
get_fingerprint()

	Return an MD5 fingerprint of the public part of this key. Nothing
secret is revealed.

	Returns:	a 16-byte string [https://docs.python.org/2.6/library/functions.html#str] (binary) of the MD5 fingerprint, in SSH
format.

	
get_name()

	Return the name of this private key implementation.

	Returns:	name of this private key type, in SSH terminology, as a str [https://docs.python.org/2.6/library/functions.html#str] (for
example, "ssh-rsa").

	
sign_ssh_data(data)

	Sign a blob of data with this private key, and return a Message
representing an SSH signature message.

	Parameters:	data (str [https://docs.python.org/2.6/library/functions.html#str]) – the data to sign.

	Returns:	an SSH signature message.

	
verify_ssh_sig(data, msg)

	Given a blob of data, and an SSH message representing a signature of
that data, verify that it was signed with this key.

	Parameters:	
	data (str [https://docs.python.org/2.6/library/functions.html#str]) – the data that was signed.

	msg (Message) – an SSH signature message

	Returns:	True if the signature verifies correctly; False otherwise.

	
write_private_key(file_obj, password=None)

	Write private key contents into a file (or file-like) object. If the
password is not None, the key is encrypted before writing.

	Parameters:	
	file_obj – the file-like object to write into

	password (str [https://docs.python.org/2.6/library/functions.html#str]) – an optional password to use to encrypt the key

	Raises:	
	IOError – if there was an error writing to the file

	SSHException – if the key is invalid

	
write_private_key_file(filename, password=None)

	Write private key contents into a file. If the password is not
None, the key is encrypted before writing.

	Parameters:	
	filename (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the file to write

	password (str [https://docs.python.org/2.6/library/functions.html#str]) – an optional password to use to encrypt the key file

	Raises:	
	IOError – if there was an error writing the file

	SSHException – if the key is invalid

DSA (DSS)

DSS keys.

	
class paramiko.dsskey.DSSKey(msg=None, data=None, filename=None, password=None, vals=None, file_obj=None)

	Representation of a DSS key which can be used to sign an verify SSH2
data.

	
static generate(bits=1024, progress_func=None)

	Generate a new private DSS key. This factory function can be used to
generate a new host key or authentication key.

	Parameters:	
	bits (int [https://docs.python.org/2.6/library/functions.html#int]) – number of bits the generated key should be.

	progress_func (function) – an optional function to call at key points in key generation (used
by pyCrypto.PublicKey).

	Returns:	new DSSKey private key

RSA

RSA keys.

	
class paramiko.rsakey.RSAKey(msg=None, data=None, filename=None, password=None, vals=None, file_obj=None)

	Representation of an RSA key which can be used to sign and verify SSH2
data.

	
static generate(bits, progress_func=None)

	Generate a new private RSA key. This factory function can be used to
generate a new host key or authentication key.

	Parameters:	
	bits (int [https://docs.python.org/2.6/library/functions.html#int]) – number of bits the generated key should be.

	progress_func (function) – an optional function to call at key points in key generation (used
by pyCrypto.PublicKey).

	Returns:	new RSAKey private key

ECDSA

ECDSA keys

	
class paramiko.ecdsakey.ECDSAKey(msg=None, data=None, filename=None, password=None, vals=None, file_obj=None, validate_point=True)

	Representation of an ECDSA key which can be used to sign and verify SSH2
data.

	
static generate(curve=<ecdsa.curves.Curve instance>, progress_func=None)

	Generate a new private ECDSA key. This factory function can be used to
generate a new host key or authentication key.

	Parameters:	progress_func (function) – Not used for this type of key.

	Returns:	A new private key (ECDSAKey) object

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

GSS-API authentication

This module provides GSS-API / SSPI authentication as defined in RFC 4462 [https://tools.ietf.org/html/rfc4462.html].

Note

Credential delegation is not supported in server mode.

See also

GSS-API key exchange

New in version 1.15.

	
paramiko.ssh_gss.GSSAuth(auth_method, gss_deleg_creds=True)

	Provide SSH2 GSS-API / SSPI authentication.

	Parameters:	
	auth_method (str [https://docs.python.org/2.6/library/functions.html#str]) – The name of the SSH authentication mechanism
(gssapi-with-mic or gss-keyex)

	gss_deleg_creds (bool [https://docs.python.org/2.6/library/functions.html#bool]) – Delegate client credentials or not.
We delegate credentials by default.

	Returns:	Either an _SSH_GSSAPI (Unix) object or an
_SSH_SSPI (Windows) object

	Return type:	Object

	Raises:	ImportError – If no GSS-API / SSPI module could be imported.

	See:	RFC 4462 [http://www.ietf.org/rfc/rfc4462.txt]

	Note:	Check for the available API and return either an _SSH_GSSAPI
(MIT GSSAPI) object or an _SSH_SSPI (MS SSPI) object. If you
get python-gssapi working on Windows, python-gssapi
will be used and a _SSH_GSSAPI object will be returned.
If there is no supported API available,
None will be returned.

	
class paramiko.ssh_gss._SSH_GSSAuth(auth_method, gss_deleg_creds)

	Contains the shared variables and methods of _SSH_GSSAPI and
_SSH_SSPI.

	
__init__(auth_method, gss_deleg_creds)

	

	Parameters:	
	auth_method (str [https://docs.python.org/2.6/library/functions.html#str]) – The name of the SSH authentication mechanism
(gssapi-with-mic or gss-keyex)

	gss_deleg_creds (bool [https://docs.python.org/2.6/library/functions.html#bool]) – Delegate client credentials or not

	
__weakref__

	list of weak references to the object (if defined)

	
set_service(service)

	This is just a setter to use a non default service.
I added this method, because RFC 4462 doesn’t specify “ssh-connection”
as the only service value.

	Parameters:	service (str [https://docs.python.org/2.6/library/functions.html#str]) – The desired SSH service

	Return type:	Void

	
set_username(username)

	Setter for C{username}. If GSS-API Key Exchange is performed, the
username is not set by C{ssh_init_sec_context}.

	Parameters:	username (str [https://docs.python.org/2.6/library/functions.html#str]) – The name of the user who attempts to login

	Return type:	Void

	
ssh_check_mech(desired_mech)

	Check if the given OID is the Kerberos V5 OID (server mode).

	Parameters:	desired_mech (str [https://docs.python.org/2.6/library/functions.html#str]) – The desired GSS-API mechanism of the client

	Returns:	True if the given OID is supported, otherwise C{False}

	Return type:	Boolean

	
ssh_gss_oids(mode='client')

	This method returns a single OID, because we only support the
Kerberos V5 mechanism.

	Parameters:	mode (str [https://docs.python.org/2.6/library/functions.html#str]) – Client for client mode and server for server mode

	Returns:	A byte sequence containing the number of supported
OIDs, the length of the OID and the actual OID encoded with
DER

	Return type:	Bytes

	Note:	In server mode we just return the OID length and the DER encoded
OID.

	
class paramiko.ssh_gss._SSH_GSSAPI(auth_method, gss_deleg_creds)

	Implementation of the GSS-API MIT Kerberos Authentication for SSH2.

	See:	GSSAuth

	
__init__(auth_method, gss_deleg_creds)

	

	Parameters:	
	auth_method (str [https://docs.python.org/2.6/library/functions.html#str]) – The name of the SSH authentication mechanism
(gssapi-with-mic or gss-keyex)

	gss_deleg_creds (bool [https://docs.python.org/2.6/library/functions.html#bool]) – Delegate client credentials or not

	
credentials_delegated

	Checks if credentials are delegated (server mode).

	Returns:	True if credentials are delegated, otherwise False

	Return type:	bool [https://docs.python.org/2.6/library/functions.html#bool]

	
save_client_creds(client_token)

	Save the Client token in a file. This is used by the SSH server
to store the client credentials if credentials are delegated
(server mode).

	Parameters:	client_token (str [https://docs.python.org/2.6/library/functions.html#str]) – The GSS-API token received form the client

	Raises:	NotImplementedError – Credential delegation is currently not
supported in server mode

	
ssh_accept_sec_context(hostname, recv_token, username=None)

	Accept a GSS-API context (server mode).

	Parameters:	
	hostname (str [https://docs.python.org/2.6/library/functions.html#str]) – The servers hostname

	username (str [https://docs.python.org/2.6/library/functions.html#str]) – The name of the user who attempts to login

	recv_token (str [https://docs.python.org/2.6/library/functions.html#str]) – The GSS-API Token received from the server,
if it’s not the initial call.

	Returns:	A String if the GSS-API has returned a token or None
if no token was returned

	Return type:	String or None

	
ssh_check_mic(mic_token, session_id, username=None)

	Verify the MIC token for a SSH2 message.

	Parameters:	
	mic_token (str [https://docs.python.org/2.6/library/functions.html#str]) – The MIC token received from the client

	session_id (str [https://docs.python.org/2.6/library/functions.html#str]) – The SSH session ID

	username (str [https://docs.python.org/2.6/library/functions.html#str]) – The name of the user who attempts to login

	Returns:	None if the MIC check was successful

	Raises:	gssapi.GSSException – if the MIC check failed

	
ssh_get_mic(session_id, gss_kex=False)

	Create the MIC token for a SSH2 message.

	Parameters:	
	session_id (str [https://docs.python.org/2.6/library/functions.html#str]) – The SSH session ID

	gss_kex (bool [https://docs.python.org/2.6/library/functions.html#bool]) – Generate the MIC for GSS-API Key Exchange or not

	Returns:	gssapi-with-mic:
Returns the MIC token from GSS-API for the message we created
with _ssh_build_mic.
gssapi-keyex:
Returns the MIC token from GSS-API with the SSH session ID as
message.

	Return type:	String

	See:	_ssh_build_mic

	
ssh_init_sec_context(target, desired_mech=None, username=None, recv_token=None)

	Initialize a GSS-API context.

	Parameters:	
	username (str [https://docs.python.org/2.6/library/functions.html#str]) – The name of the user who attempts to login

	target (str [https://docs.python.org/2.6/library/functions.html#str]) – The hostname of the target to connect to

	desired_mech (str [https://docs.python.org/2.6/library/functions.html#str]) – The negotiated GSS-API mechanism
(“pseudo negotiated” mechanism, because we
support just the krb5 mechanism :-))

	recv_token (str [https://docs.python.org/2.6/library/functions.html#str]) – The GSS-API token received from the Server

	Raises:	SSHException – Is raised if the desired mechanism of the client
is not supported

	Returns:	A String if the GSS-API has returned a token or None if
no token was returned

	Return type:	String or None

	
class paramiko.ssh_gss._SSH_SSPI(auth_method, gss_deleg_creds)

	Implementation of the Microsoft SSPI Kerberos Authentication for SSH2.

	See:	GSSAuth

	
__init__(auth_method, gss_deleg_creds)

	

	Parameters:	
	auth_method (str [https://docs.python.org/2.6/library/functions.html#str]) – The name of the SSH authentication mechanism
(gssapi-with-mic or gss-keyex)

	gss_deleg_creds (bool [https://docs.python.org/2.6/library/functions.html#bool]) – Delegate client credentials or not

	
credentials_delegated

	Checks if credentials are delegated (server mode).

	Returns:	True if credentials are delegated, otherwise False

	Return type:	Boolean

	
save_client_creds(client_token)

	Save the Client token in a file. This is used by the SSH server
to store the client credentails if credentials are delegated
(server mode).

	Parameters:	client_token (str [https://docs.python.org/2.6/library/functions.html#str]) – The SSPI token received form the client

	Raises:	NotImplementedError – Credential delegation is currently not
supported in server mode

	
ssh_accept_sec_context(hostname, username, recv_token)

	Accept a SSPI context (server mode).

	Parameters:	
	hostname (str [https://docs.python.org/2.6/library/functions.html#str]) – The servers FQDN

	username (str [https://docs.python.org/2.6/library/functions.html#str]) – The name of the user who attempts to login

	recv_token (str [https://docs.python.org/2.6/library/functions.html#str]) – The SSPI Token received from the server,
if it’s not the initial call.

	Returns:	A String if the SSPI has returned a token or None if
no token was returned

	Return type:	String or None

	
ssh_check_mic(mic_token, session_id, username=None)

	Verify the MIC token for a SSH2 message.

	Parameters:	
	mic_token (str [https://docs.python.org/2.6/library/functions.html#str]) – The MIC token received from the client

	session_id (str [https://docs.python.org/2.6/library/functions.html#str]) – The SSH session ID

	username (str [https://docs.python.org/2.6/library/functions.html#str]) – The name of the user who attempts to login

	Returns:	None if the MIC check was successful

	Raises:	sspi.error – if the MIC check failed

	
ssh_get_mic(session_id, gss_kex=False)

	Create the MIC token for a SSH2 message.

	Parameters:	
	session_id (str [https://docs.python.org/2.6/library/functions.html#str]) – The SSH session ID

	gss_kex (bool [https://docs.python.org/2.6/library/functions.html#bool]) – Generate the MIC for Key Exchange with SSPI or not

	Returns:	gssapi-with-mic:
Returns the MIC token from SSPI for the message we created
with _ssh_build_mic.
gssapi-keyex:
Returns the MIC token from SSPI with the SSH session ID as
message.

	Return type:	String

	See:	_ssh_build_mic

	
ssh_init_sec_context(target, desired_mech=None, username=None, recv_token=None)

	Initialize a SSPI context.

	Parameters:	
	username (str [https://docs.python.org/2.6/library/functions.html#str]) – The name of the user who attempts to login

	target (str [https://docs.python.org/2.6/library/functions.html#str]) – The FQDN of the target to connect to

	desired_mech (str [https://docs.python.org/2.6/library/functions.html#str]) – The negotiated SSPI mechanism
(“pseudo negotiated” mechanism, because we
support just the krb5 mechanism :-))

	recv_token – The SSPI token received from the Server

	Raises:	SSHException – Is raised if the desired mechanism of the client
is not supported

	Returns:	A String if the SSPI has returned a token or None if
no token was returned

	Return type:	String or None

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

GSS-API key exchange

This module provides GSS-API / SSPI Key Exchange as defined in RFC 4462 [https://tools.ietf.org/html/rfc4462.html].

Note

Credential delegation is not supported in server mode.

Note

RFC 4462 Section 2.2 [https://tools.ietf.org/html/rfc4462.html#section-2.2] says we are not
required to implement GSS-API error messages. Thus, in many methods within
this module, if an error occurs an exception will be thrown and the
connection will be terminated.

See also

GSS-API authentication

New in version 1.15.

	
class paramiko.kex_gss.KexGSSGex(transport)

	GSS-API / SSPI Authenticated Diffie-Hellman Group Exchange as defined in
RFC 4462 Section 2 [https://tools.ietf.org/html/rfc4462.html#section-2]

	
__weakref__

	list of weak references to the object (if defined)

	
parse_next(ptype, m)

	Parse the next packet.

	Parameters:	
	ptype (char) – The type of the incoming packet

	m (Message) – The paket content

	
start_kex()

	Start the GSS-API / SSPI Authenticated Diffie-Hellman Group Exchange

	
class paramiko.kex_gss.KexGSSGroup1(transport)

	GSS-API / SSPI Authenticated Diffie-Hellman Key Exchange as defined in RFC
4462 Section 2 [https://tools.ietf.org/html/rfc4462.html#section-2]

	
__weakref__

	list of weak references to the object (if defined)

	
parse_next(ptype, m)

	Parse the next packet.

	Parameters:	
	ptype (char) – The type of the incoming packet

	m (Message) – The paket content

	
start_kex()

	Start the GSS-API / SSPI Authenticated Diffie-Hellman Key Exchange.

	
class paramiko.kex_gss.KexGSSGroup14(transport)

	GSS-API / SSPI Authenticated Diffie-Hellman Group14 Key Exchange as defined
in RFC 4462 Section 2 [https://tools.ietf.org/html/rfc4462.html#section-2]

	
class paramiko.kex_gss.NullHostKey

	This class represents the Null Host Key for GSS-API Key Exchange as defined
in RFC 4462 Section 5 [https://tools.ietf.org/html/rfc4462.html#section-5]

	
__weakref__

	list of weak references to the object (if defined)

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

Configuration

Configuration file (aka ssh_config) support.

	
class paramiko.config.LazyFqdn(config, host=None)

	Returns the host’s fqdn on request as string.

	
__weakref__

	list of weak references to the object (if defined)

	
class paramiko.config.SSHConfig

	Representation of config information as stored in the format used by
OpenSSH. Queries can be made via lookup. The format is described in
OpenSSH’s ssh_config man page. This class is provided primarily as a
convenience to posix users (since the OpenSSH format is a de-facto
standard on posix) but should work fine on Windows too.

New in version 1.6.

	
__init__()

	Create a new OpenSSH config object.

	
__weakref__

	list of weak references to the object (if defined)

	
get_hostnames()

	Return the set of literal hostnames defined in the SSH config (both
explicit hostnames and wildcard entries).

	
lookup(hostname)

	Return a dict of config options for a given hostname.

The host-matching rules of OpenSSH’s ssh_config man page are used:
For each parameter, the first obtained value will be used. The
configuration files contain sections separated by Host
specifications, and that section is only applied for hosts that match
one of the patterns given in the specification.

Since the first obtained value for each parameter is used, more host-
specific declarations should be given near the beginning of the file,
and general defaults at the end.

The keys in the returned dict are all normalized to lowercase (look for
"port", not "Port". The values are processed according to the
rules for substitution variable expansion in ssh_config.

	Parameters:	hostname (str [https://docs.python.org/2.6/library/functions.html#str]) – the hostname to lookup

	
parse(file_obj)

	Read an OpenSSH config from the given file object.

	Parameters:	file_obj – a file-like object to read the config file from

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

ProxyCommand support

	
class paramiko.proxy.ProxyCommand(command_line)

	Wraps a subprocess running ProxyCommand-driven programs.

This class implements a the socket-like interface needed by the
Transport and Packetizer classes. Using this class instead of a
regular socket makes it possible to talk with a Popen’d command that will
proxy traffic between the client and a server hosted in another machine.

Instances of this class may be used as context managers.

	
__init__(command_line)

	Create a new CommandProxy instance. The instance created by this
class can be passed as an argument to the Transport class.

	Parameters:	command_line (str [https://docs.python.org/2.6/library/functions.html#str]) – the command that should be executed and used as the proxy.

	
recv(size)

	Read from the standard output of the forked program.

	Parameters:	size (int [https://docs.python.org/2.6/library/functions.html#int]) – how many chars should be read

	Returns:	the string of bytes read, which may be shorter than requested

	
send(content)

	Write the content received from the SSH client to the standard
input of the forked command.

	Parameters:	content (str [https://docs.python.org/2.6/library/functions.html#str]) – string to be sent to the forked command

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

Server implementation

ServerInterface is an interface to override for server support.

	
class paramiko.server.InteractiveQuery(name='', instructions='', *prompts)

	A query (set of prompts) for a user during interactive authentication.

	
__init__(name='', instructions='', *prompts)

	Create a new interactive query to send to the client. The name and
instructions are optional, but are generally displayed to the end
user. A list of prompts may be included, or they may be added via
the add_prompt method.

	Parameters:	
	name (str [https://docs.python.org/2.6/library/functions.html#str]) – name of this query

	instructions (str [https://docs.python.org/2.6/library/functions.html#str]) – user instructions (usually short) about this query

	prompts (str [https://docs.python.org/2.6/library/functions.html#str]) – one or more authentication prompts

	
__weakref__

	list of weak references to the object (if defined)

	
add_prompt(prompt, echo=True)

	Add a prompt to this query. The prompt should be a (reasonably short)
string. Multiple prompts can be added to the same query.

	Parameters:	
	prompt (str [https://docs.python.org/2.6/library/functions.html#str]) – the user prompt

	echo (bool [https://docs.python.org/2.6/library/functions.html#bool]) – True (default) if the user’s response should be echoed;
False if not (for a password or similar)

	
class paramiko.server.ServerInterface

	This class defines an interface for controlling the behavior of Paramiko
in server mode.

Methods on this class are called from Paramiko’s primary thread, so you
shouldn’t do too much work in them. (Certainly nothing that blocks or
sleeps.)

	
__weakref__

	list of weak references to the object (if defined)

	
cancel_port_forward_request(address, port)

	The client would like to cancel a previous port-forwarding request.
If the given address and port is being forwarded across this ssh
connection, the port should be closed.

	Parameters:	
	address (str [https://docs.python.org/2.6/library/functions.html#str]) – the forwarded address

	port (int [https://docs.python.org/2.6/library/functions.html#int]) – the forwarded port

	
check_auth_gssapi_keyex(username, gss_authenticated=2, cc_file=None)

	Authenticate the given user to the server if he is a valid krb5
principal and GSS-API Key Exchange was performed.
If GSS-API Key Exchange was not performed, this authentication method
won’t be available.

	Parameters:	
	username (str [https://docs.python.org/2.6/library/functions.html#str]) – The username of the authenticating client

	gss_authenticated (int [https://docs.python.org/2.6/library/functions.html#int]) – The result of the krb5 authentication

	cc_filename (str [https://docs.python.org/2.6/library/functions.html#str]) – The krb5 client credentials cache filename

	Returns:	AUTH_FAILED if the user is not authenticated otherwise
AUTH_SUCCESSFUL

	Return type:	int [https://docs.python.org/2.6/library/functions.html#int]

	Note:	Kerberos credential delegation is not supported.

	See:	ssh_gss kex_gss

	Note:	: We are just checking in L{AuthHandler} that the given user is
a valid krb5 principal!
We don’t check if the krb5 principal is allowed to log in on
the server, because there is no way to do that in python. So
if you develop your own SSH server with paramiko for a cetain
plattform like Linux, you should call C{krb5_kuserok()} in your
local kerberos library to make sure that the krb5_principal has
an account on the server and is allowed to log in as a user.

	See:	http://www.unix.com/man-page/all/3/krb5_kuserok/

	
check_auth_gssapi_with_mic(username, gss_authenticated=2, cc_file=None)

	Authenticate the given user to the server if he is a valid krb5
principal.

	Parameters:	
	username (str [https://docs.python.org/2.6/library/functions.html#str]) – The username of the authenticating client

	gss_authenticated (int [https://docs.python.org/2.6/library/functions.html#int]) – The result of the krb5 authentication

	cc_filename (str [https://docs.python.org/2.6/library/functions.html#str]) – The krb5 client credentials cache filename

	Returns:	AUTH_FAILED if the user is not authenticated otherwise
AUTH_SUCCESSFUL

	Return type:	int [https://docs.python.org/2.6/library/functions.html#int]

	Note:	Kerberos credential delegation is not supported.

	See:	ssh_gss

	Note:	: We are just checking in L{AuthHandler} that the given user is
a valid krb5 principal!
We don’t check if the krb5 principal is allowed to log in on
the server, because there is no way to do that in python. So
if you develop your own SSH server with paramiko for a cetain
plattform like Linux, you should call C{krb5_kuserok()} in your
local kerberos library to make sure that the krb5_principal has
an account on the server and is allowed to log in as a user.

	See:	http://www.unix.com/man-page/all/3/krb5_kuserok/

	
check_auth_interactive(username, submethods)

	Begin an interactive authentication challenge, if supported. You
should override this method in server mode if you want to support the
"keyboard-interactive" auth type, which requires you to send a
series of questions for the client to answer.

Return AUTH_FAILED if this auth method isn’t supported. Otherwise,
you should return an InteractiveQuery object containing the prompts
and instructions for the user. The response will be sent via a call
to check_auth_interactive_response.

The default implementation always returns AUTH_FAILED.

	Parameters:	
	username (str [https://docs.python.org/2.6/library/functions.html#str]) – the username of the authenticating client

	submethods (str [https://docs.python.org/2.6/library/functions.html#str]) – a comma-separated list of methods preferred by the client (usually
empty)

	Returns:	AUTH_FAILED if this auth method isn’t supported; otherwise an
object containing queries for the user

	Return type:	int or InteractiveQuery

	
check_auth_interactive_response(responses)

	Continue or finish an interactive authentication challenge, if
supported. You should override this method in server mode if you want
to support the "keyboard-interactive" auth type.

Return AUTH_FAILED if the responses are not accepted,
AUTH_SUCCESSFUL if the responses are accepted and complete
the authentication, or AUTH_PARTIALLY_SUCCESSFUL if your
authentication is stateful, and this set of responses is accepted for
authentication, but more authentication is required. (In this latter
case, get_allowed_auths will be called to report to the client what
options it has for continuing the authentication.)

If you wish to continue interactive authentication with more questions,
you may return an InteractiveQuery object, which should cause the
client to respond with more answers, calling this method again. This
cycle can continue indefinitely.

The default implementation always returns AUTH_FAILED.

	Parameters:	responses (list [https://docs.python.org/2.6/library/functions.html#list]) – list of str [https://docs.python.org/2.6/library/functions.html#str] responses from the client

	Returns:	AUTH_FAILED if the authentication fails; AUTH_SUCCESSFUL if
it succeeds; AUTH_PARTIALLY_SUCCESSFUL if the interactive auth
is successful, but authentication must continue; otherwise an
object containing queries for the user

	Return type:	int or InteractiveQuery

	
check_auth_none(username)

	Determine if a client may open channels with no (further)
authentication.

Return AUTH_FAILED if the client must authenticate, or
AUTH_SUCCESSFUL if it’s okay for the client to not
authenticate.

The default implementation always returns AUTH_FAILED.

	Parameters:	username (str [https://docs.python.org/2.6/library/functions.html#str]) – the username of the client.

	Returns:	AUTH_FAILED if the authentication fails; AUTH_SUCCESSFUL if
it succeeds.

	Return type:	int [https://docs.python.org/2.6/library/functions.html#int]

	
check_auth_password(username, password)

	Determine if a given username and password supplied by the client is
acceptable for use in authentication.

Return AUTH_FAILED if the password is not accepted,
AUTH_SUCCESSFUL if the password is accepted and completes
the authentication, or AUTH_PARTIALLY_SUCCESSFUL if your
authentication is stateful, and this key is accepted for
authentication, but more authentication is required. (In this latter
case, get_allowed_auths will be called to report to the client what
options it has for continuing the authentication.)

The default implementation always returns AUTH_FAILED.

	Parameters:	
	username (str [https://docs.python.org/2.6/library/functions.html#str]) – the username of the authenticating client.

	password (str [https://docs.python.org/2.6/library/functions.html#str]) – the password given by the client.

	Returns:	AUTH_FAILED if the authentication fails; AUTH_SUCCESSFUL if
it succeeds; AUTH_PARTIALLY_SUCCESSFUL if the password auth is
successful, but authentication must continue.

	Return type:	int [https://docs.python.org/2.6/library/functions.html#int]

	
check_auth_publickey(username, key)

	Determine if a given key supplied by the client is acceptable for use
in authentication. You should override this method in server mode to
check the username and key and decide if you would accept a signature
made using this key.

Return AUTH_FAILED if the key is not accepted,
AUTH_SUCCESSFUL if the key is accepted and completes the
authentication, or AUTH_PARTIALLY_SUCCESSFUL if your
authentication is stateful, and this password is accepted for
authentication, but more authentication is required. (In this latter
case, get_allowed_auths will be called to report to the client what
options it has for continuing the authentication.)

Note that you don’t have to actually verify any key signtature here.
If you’re willing to accept the key, Paramiko will do the work of
verifying the client’s signature.

The default implementation always returns AUTH_FAILED.

	Parameters:	
	username (str [https://docs.python.org/2.6/library/functions.html#str]) – the username of the authenticating client

	key (PKey) – the key object provided by the client

	Returns:	AUTH_FAILED if the client can’t authenticate with this key;
AUTH_SUCCESSFUL if it can; AUTH_PARTIALLY_SUCCESSFUL if it
can authenticate with this key but must continue with
authentication

	Return type:	int [https://docs.python.org/2.6/library/functions.html#int]

	
check_channel_direct_tcpip_request(chanid, origin, destination)

	Determine if a local port forwarding channel will be granted, and
return OPEN_SUCCEEDED or an error code. This method is
called in server mode when the client requests a channel, after
authentication is complete.

The chanid parameter is a small number that uniquely identifies the
channel within a Transport. A Channel object is not created
unless this method returns OPEN_SUCCEEDED – once a
Channel object is created, you can call Channel.get_id to
retrieve the channel ID.

The origin and destination parameters are (ip_address, port) tuples
that correspond to both ends of the TCP connection in the forwarding
tunnel.

The return value should either be OPEN_SUCCEEDED (or
0) to allow the channel request, or one of the following error
codes to reject it:

	OPEN_FAILED_ADMINISTRATIVELY_PROHIBITED

	OPEN_FAILED_CONNECT_FAILED

	OPEN_FAILED_UNKNOWN_CHANNEL_TYPE

	OPEN_FAILED_RESOURCE_SHORTAGE

The default implementation always returns
OPEN_FAILED_ADMINISTRATIVELY_PROHIBITED.

	Parameters:	
	chanid (int [https://docs.python.org/2.6/library/functions.html#int]) – ID of the channel

	origin (tuple [https://docs.python.org/2.6/library/functions.html#tuple]) – 2-tuple containing the IP address and port of the originator
(client side)

	destination (tuple [https://docs.python.org/2.6/library/functions.html#tuple]) – 2-tuple containing the IP address and port of the destination
(server side)

	Returns:	an int [https://docs.python.org/2.6/library/functions.html#int] success or failure code (listed above)

	
check_channel_env_request(channel, name, value)

	Check whether a given environment variable can be specified for the
given channel. This method should return True if the server
is willing to set the specified environment variable. Note that
some environment variables (e.g., PATH) can be exceedingly
dangerous, so blindly allowing the client to set the environment
is almost certainly not a good idea.

The default implementation always returns False.

	Parameters:	
	channel – the Channel the env request arrived on

	name (str [https://docs.python.org/2.6/library/functions.html#str]) – name

	value (str [https://docs.python.org/2.6/library/functions.html#str]) – Channel value

	Returns:	A boolean

	
check_channel_exec_request(channel, command)

	Determine if a shell command will be executed for the client. If this
method returns True, the channel should be connected to the stdin,
stdout, and stderr of the shell command.

The default implementation always returns False.

	Parameters:	
	channel (Channel) – the Channel the request arrived on.

	command (str [https://docs.python.org/2.6/library/functions.html#str]) – the command to execute.

	Returns:	True if this channel is now hooked up to the stdin, stdout, and
stderr of the executing command; False if the command will not
be executed.

New in version 1.1.

	
check_channel_forward_agent_request(channel)

	Determine if the client will be provided with an forward agent session.
If this method returns True, the server will allow SSH Agent
forwarding.

The default implementation always returns False.

	Parameters:	channel (Channel) – the Channel the request arrived on

	Returns:	True if the AgentForward was loaded; False if not

	
check_channel_pty_request(channel, term, width, height, pixelwidth, pixelheight, modes)

	Determine if a pseudo-terminal of the given dimensions (usually
requested for shell access) can be provided on the given channel.

The default implementation always returns False.

	Parameters:	
	channel (Channel) – the Channel the pty request arrived on.

	term (str [https://docs.python.org/2.6/library/functions.html#str]) – type of terminal requested (for example, "vt100").

	width (int [https://docs.python.org/2.6/library/functions.html#int]) – width of screen in characters.

	height (int [https://docs.python.org/2.6/library/functions.html#int]) – height of screen in characters.

	pixelwidth (int [https://docs.python.org/2.6/library/functions.html#int]) – width of screen in pixels, if known (may be 0 if unknown).

	pixelheight (int [https://docs.python.org/2.6/library/functions.html#int]) – height of screen in pixels, if known (may be 0 if unknown).

	Returns:	True if the pseudo-terminal has been allocated; False
otherwise.

	
check_channel_request(kind, chanid)

	Determine if a channel request of a given type will be granted, and
return OPEN_SUCCEEDED or an error code. This method is
called in server mode when the client requests a channel, after
authentication is complete.

If you allow channel requests (and an ssh server that didn’t would be
useless), you should also override some of the channel request methods
below, which are used to determine which services will be allowed on
a given channel:

	check_channel_pty_request

	check_channel_shell_request

	check_channel_subsystem_request

	check_channel_window_change_request

	check_channel_x11_request

	check_channel_forward_agent_request

The chanid parameter is a small number that uniquely identifies the
channel within a Transport. A Channel object is not created
unless this method returns OPEN_SUCCEEDED – once a
Channel object is created, you can call Channel.get_id to
retrieve the channel ID.

The return value should either be OPEN_SUCCEEDED (or
0) to allow the channel request, or one of the following error
codes to reject it:

	OPEN_FAILED_ADMINISTRATIVELY_PROHIBITED

	OPEN_FAILED_CONNECT_FAILED

	OPEN_FAILED_UNKNOWN_CHANNEL_TYPE

	OPEN_FAILED_RESOURCE_SHORTAGE

The default implementation always returns
OPEN_FAILED_ADMINISTRATIVELY_PROHIBITED.

	Parameters:	
	kind (str [https://docs.python.org/2.6/library/functions.html#str]) – the kind of channel the client would like to open (usually
"session").

	chanid (int [https://docs.python.org/2.6/library/functions.html#int]) – ID of the channel

	Returns:	an int [https://docs.python.org/2.6/library/functions.html#int] success or failure code (listed above)

	
check_channel_shell_request(channel)

	Determine if a shell will be provided to the client on the given
channel. If this method returns True, the channel should be
connected to the stdin/stdout of a shell (or something that acts like
a shell).

The default implementation always returns False.

	Parameters:	channel (Channel) – the Channel the request arrived on.

	Returns:	True if this channel is now hooked up to a shell; False if
a shell can’t or won’t be provided.

	
check_channel_subsystem_request(channel, name)

	Determine if a requested subsystem will be provided to the client on
the given channel. If this method returns True, all future I/O
through this channel will be assumed to be connected to the requested
subsystem. An example of a subsystem is sftp.

The default implementation checks for a subsystem handler assigned via
Transport.set_subsystem_handler.
If one has been set, the handler is invoked and this method returns
True. Otherwise it returns False.

Note

Because the default implementation uses the Transport to
identify valid subsystems, you probably won’t need to override this
method.

	Parameters:	
	channel (Channel) – the Channel the pty request arrived on.

	name (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the requested subsystem.

	Returns:	True if this channel is now hooked up to the requested
subsystem; False if that subsystem can’t or won’t be provided.

	
check_channel_window_change_request(channel, width, height, pixelwidth, pixelheight)

	Determine if the pseudo-terminal on the given channel can be resized.
This only makes sense if a pty was previously allocated on it.

The default implementation always returns False.

	Parameters:	
	channel (Channel) – the Channel the pty request arrived on.

	width (int [https://docs.python.org/2.6/library/functions.html#int]) – width of screen in characters.

	height (int [https://docs.python.org/2.6/library/functions.html#int]) – height of screen in characters.

	pixelwidth (int [https://docs.python.org/2.6/library/functions.html#int]) – width of screen in pixels, if known (may be 0 if unknown).

	pixelheight (int [https://docs.python.org/2.6/library/functions.html#int]) – height of screen in pixels, if known (may be 0 if unknown).

	Returns:	True if the terminal was resized; False if not.

	
check_channel_x11_request(channel, single_connection, auth_protocol, auth_cookie, screen_number)

	Determine if the client will be provided with an X11 session. If this
method returns True, X11 applications should be routed through new
SSH channels, using Transport.open_x11_channel.

The default implementation always returns False.

	Parameters:	
	channel (Channel) – the Channel the X11 request arrived on

	single_connection (bool [https://docs.python.org/2.6/library/functions.html#bool]) – True if only a single X11 channel should be opened, else
False.

	auth_protocol (str [https://docs.python.org/2.6/library/functions.html#str]) – the protocol used for X11 authentication

	auth_cookie (str [https://docs.python.org/2.6/library/functions.html#str]) – the cookie used to authenticate to X11

	screen_number (int [https://docs.python.org/2.6/library/functions.html#int]) – the number of the X11 screen to connect to

	Returns:	True if the X11 session was opened; False if not

	
check_global_request(kind, msg)

	Handle a global request of the given kind. This method is called
in server mode and client mode, whenever the remote host makes a global
request. If there are any arguments to the request, they will be in
msg.

There aren’t any useful global requests defined, aside from port
forwarding, so usually this type of request is an extension to the
protocol.

If the request was successful and you would like to return contextual
data to the remote host, return a tuple. Items in the tuple will be
sent back with the successful result. (Note that the items in the
tuple can only be strings, ints, longs, or bools.)

The default implementation always returns False, indicating that it
does not support any global requests.

Note

Port forwarding requests are handled separately, in
check_port_forward_request.

	Parameters:	
	kind (str [https://docs.python.org/2.6/library/functions.html#str]) – the kind of global request being made.

	msg (Message) – any extra arguments to the request.

	Returns:	True or a tuple [https://docs.python.org/2.6/library/functions.html#tuple] of data if the request was granted; False
otherwise.

	
check_port_forward_request(address, port)

	Handle a request for port forwarding. The client is asking that
connections to the given address and port be forwarded back across
this ssh connection. An address of "0.0.0.0" indicates a global
address (any address associated with this server) and a port of 0
indicates that no specific port is requested (usually the OS will pick
a port).

The default implementation always returns False, rejecting the
port forwarding request. If the request is accepted, you should return
the port opened for listening.

	Parameters:	
	address (str [https://docs.python.org/2.6/library/functions.html#str]) – the requested address

	port (int [https://docs.python.org/2.6/library/functions.html#int]) – the requested port

	Returns:	the port number (int [https://docs.python.org/2.6/library/functions.html#int]) that was opened for listening, or False
to reject

	
enable_auth_gssapi()

	Overwrite this function in your SSH server to enable GSSAPI
authentication.
The default implementation always returns false.

	Returns:	True if GSSAPI authentication is enabled otherwise false

	Return type:	Boolean

	See:	: ssh_gss

	
get_allowed_auths(username)

	Return a list of authentication methods supported by the server.
This list is sent to clients attempting to authenticate, to inform them
of authentication methods that might be successful.

The “list” is actually a string of comma-separated names of types of
authentication. Possible values are "password", "publickey",
and "none".

The default implementation always returns "password".

	Parameters:	username (str [https://docs.python.org/2.6/library/functions.html#str]) – the username requesting authentication.

	Returns:	a comma-separated str [https://docs.python.org/2.6/library/functions.html#str] of authentication types

	
class paramiko.server.SubsystemHandler(channel, name, server)

	Handler for a subsytem in server mode. If you create a subclass of this
class and pass it to Transport.set_subsystem_handler, an object of this
class will be created for each request for this subsystem. Each new object
will be executed within its own new thread by calling start_subsystem.
When that method completes, the channel is closed.

For example, if you made a subclass MP3Handler and registered it as the
handler for subsystem "mp3", then whenever a client has successfully
authenticated and requests subsytem "mp3", an object of class
MP3Handler will be created, and start_subsystem will be called on
it from a new thread.

	
__init__(channel, name, server)

	Create a new handler for a channel. This is used by ServerInterface
to start up a new handler when a channel requests this subsystem. You
don’t need to override this method, but if you do, be sure to pass the
channel and name parameters through to the original __init__
method here.

	Parameters:	
	channel (Channel) – the channel associated with this subsystem request.

	name (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the requested subsystem.

	server (ServerInterface) – the server object for the session that started this subsystem

	
finish_subsystem()

	Perform any cleanup at the end of a subsystem. The default
implementation just closes the channel.

New in version 1.1.

	
get_server()

	Return the ServerInterface object associated with this channel and
subsystem.

	
start_subsystem(name, transport, channel)

	Process an ssh subsystem in server mode. This method is called on a
new object (and in a new thread) for each subsystem request. It is
assumed that all subsystem logic will take place here, and when the
subsystem is finished, this method will return. After this method
returns, the channel is closed.

The combination of transport and channel are unique; this handler
corresponds to exactly one Channel on one Transport.

Note

It is the responsibility of this method to exit if the underlying
Transport is closed. This can be done by checking
Transport.is_active or noticing an EOF on the Channel. If
this method loops forever without checking for this case, your
Python interpreter may refuse to exit because this thread will
still be running.

	Parameters:	
	name (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the requested subsystem.

	transport (Transport) – the server-mode Transport.

	channel (Channel) – the channel associated with this subsystem request.

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

SFTP

	
class paramiko.sftp_client.SFTP(sock)

	An alias for SFTPClient for backwards compatibility.

	
class paramiko.sftp_client.SFTPClient(sock)

	SFTP client object.

Used to open an SFTP session across an open SSH Transport and perform
remote file operations.

Instances of this class may be used as context managers.

	
__init__(sock)

	Create an SFTP client from an existing Channel. The channel
should already have requested the "sftp" subsystem.

An alternate way to create an SFTP client context is by using
from_transport.

	Parameters:	sock (Channel) – an open Channel using the "sftp" subsystem

	Raises:	SSHException – if there’s an exception while negotiating
sftp

	
chdir(path=None)

	Change the “current directory” of this SFTP session. Since SFTP
doesn’t really have the concept of a current working directory, this is
emulated by Paramiko. Once you use this method to set a working
directory, all operations on this SFTPClient object will be relative
to that path. You can pass in None to stop using a current working
directory.

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – new current working directory

	Raises:	IOError – if the requested path doesn’t exist on the server

New in version 1.4.

	
chmod(path, mode)

	Change the mode (permissions) of a file. The permissions are
unix-style and identical to those used by Python’s os.chmod [https://docs.python.org/2.6/library/os.html#os.chmod]
function.

	Parameters:	
	path (str [https://docs.python.org/2.6/library/functions.html#str]) – path of the file to change the permissions of

	mode (int [https://docs.python.org/2.6/library/functions.html#int]) – new permissions

	
chown(path, uid, gid)

	Change the owner (uid) and group (gid) of a file. As with
Python’s os.chown [https://docs.python.org/2.6/library/os.html#os.chown] function, you must pass both arguments, so if you
only want to change one, use stat first to retrieve the current
owner and group.

	Parameters:	
	path (str [https://docs.python.org/2.6/library/functions.html#str]) – path of the file to change the owner and group of

	uid (int [https://docs.python.org/2.6/library/functions.html#int]) – new owner’s uid

	gid (int [https://docs.python.org/2.6/library/functions.html#int]) – new group id

	
close()

	Close the SFTP session and its underlying channel.

New in version 1.4.

	
file(filename, mode='r', bufsize=-1)

	Open a file on the remote server. The arguments are the same as for
Python’s built-in file [https://docs.python.org/2.6/library/functions.html#file] (aka open [https://docs.python.org/2.6/library/functions.html#open]). A file-like
object is returned, which closely mimics the behavior of a normal
Python file object, including the ability to be used as a context
manager.

The mode indicates how the file is to be opened: 'r' for reading,
'w' for writing (truncating an existing file), 'a' for
appending, 'r+' for reading/writing, 'w+' for reading/writing
(truncating an existing file), 'a+' for reading/appending. The
Python 'b' flag is ignored, since SSH treats all files as binary.
The 'U' flag is supported in a compatible way.

Since 1.5.2, an 'x' flag indicates that the operation should only
succeed if the file was created and did not previously exist. This has
no direct mapping to Python’s file flags, but is commonly known as the
O_EXCL flag in posix.

The file will be buffered in standard Python style by default, but
can be altered with the bufsize parameter. 0 turns off
buffering, 1 uses line buffering, and any number greater than 1
(>1) uses that specific buffer size.

	Parameters:	
	filename (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the file to open

	mode (str [https://docs.python.org/2.6/library/functions.html#str]) – mode (Python-style) to open in

	bufsize (int [https://docs.python.org/2.6/library/functions.html#int]) – desired buffering (-1 = default buffer size)

	Returns:	an SFTPFile object representing the open file

	Raises:	IOError – if the file could not be opened.

	
classmethod from_transport(t, window_size=None, max_packet_size=None)

	Create an SFTP client channel from an open Transport.

Setting the window and packet sizes might affect the transfer speed.
The default settings in the Transport class are the same as in
OpenSSH and should work adequately for both files transfers and
interactive sessions.

	Parameters:	
	t (Transport) – an open Transport which is already authenticated

	window_size (int [https://docs.python.org/2.6/library/functions.html#int]) – optional window size for the SFTPClient session.

	max_packet_size (int [https://docs.python.org/2.6/library/functions.html#int]) – optional max packet size for the SFTPClient session..

	Returns:	a new SFTPClient object, referring to an sftp session (channel)
across the transport

Changed in version 1.15: Added the window_size and max_packet_size arguments.

	
get(remotepath, localpath, callback=None)

	Copy a remote file (remotepath) from the SFTP server to the local
host as localpath. Any exception raised by operations will be
passed through. This method is primarily provided as a convenience.

	Parameters:	
	remotepath (str [https://docs.python.org/2.6/library/functions.html#str]) – the remote file to copy

	localpath (str [https://docs.python.org/2.6/library/functions.html#str]) – the destination path on the local host

	callback (callable [https://docs.python.org/2.6/library/functions.html#callable]) – optional callback function (form: func(int, int)) that accepts
the bytes transferred so far and the total bytes to be transferred

New in version 1.4.

Changed in version 1.7.4: Added the callback param

	
get_channel()

	Return the underlying Channel object for this SFTP session. This
might be useful for doing things like setting a timeout on the channel.

New in version 1.7.1.

	
getcwd()

	Return the “current working directory” for this SFTP session, as
emulated by Paramiko. If no directory has been set with chdir,
this method will return None.

New in version 1.4.

	
getfo(remotepath, fl, callback=None)

	Copy a remote file (remotepath) from the SFTP server and write to
an open file or file-like object, fl. Any exception raised by
operations will be passed through. This method is primarily provided
as a convenience.

	Parameters:	
	remotepath (object [https://docs.python.org/2.6/library/functions.html#object]) – opened file or file-like object to copy to

	fl (str [https://docs.python.org/2.6/library/functions.html#str]) – the destination path on the local host or open file object

	callback (callable [https://docs.python.org/2.6/library/functions.html#callable]) – optional callback function (form: func(int, int)) that accepts
the bytes transferred so far and the total bytes to be transferred

	Returns:	the number [https://docs.python.org/2.6/library/functions.html#int] of bytes written to the opened file object

New in version 1.10.

	
listdir(path='.')

	Return a list containing the names of the entries in the given path.

The list is in arbitrary order. It does not include the special
entries '.' and '..' even if they are present in the folder.
This method is meant to mirror os.listdir as closely as possible.
For a list of full SFTPAttributes objects, see listdir_attr.

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – path to list (defaults to '.')

	
listdir_attr(path='.')

	Return a list containing SFTPAttributes objects corresponding to
files in the given path. The list is in arbitrary order. It does
not include the special entries '.' and '..' even if they are
present in the folder.

The returned SFTPAttributes objects will each have an additional
field: longname, which may contain a formatted string of the file’s
attributes, in unix format. The content of this string will probably
depend on the SFTP server implementation.

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – path to list (defaults to '.')

	Returns:	list of SFTPAttributes objects

New in version 1.2.

	
listdir_iter(path='.', read_aheads=50)

	Generator version of listdir_attr.

See the API docs for listdir_attr for overall details.

This function adds one more kwarg on top of listdir_attr:
read_aheads, an integer controlling how many
SSH_FXP_READDIR requests are made to the server. The default of 50
should suffice for most file listings as each request/response cycle
may contain multiple files (dependent on server implementation.)

New in version 1.15.

	
lstat(path)

	Retrieve information about a file on the remote system, without
following symbolic links (shortcuts). This otherwise behaves exactly
the same as stat.

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – the filename to stat

	Returns:	an SFTPAttributes object containing attributes about the given
file

	
mkdir(path, mode=511)

	Create a folder (directory) named path with numeric mode mode.
The default mode is 0777 (octal). On some systems, mode is ignored.
Where it is used, the current umask value is first masked out.

	Parameters:	
	path (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the folder to create

	mode (int [https://docs.python.org/2.6/library/functions.html#int]) – permissions (posix-style) for the newly-created folder

	
normalize(path)

	Return the normalized path (on the server) of a given path. This
can be used to quickly resolve symbolic links or determine what the
server is considering to be the “current folder” (by passing '.'
as path).

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – path to be normalized

	Returns:	normalized form of the given path (as a str [https://docs.python.org/2.6/library/functions.html#str])

	Raises:	IOError – if the path can’t be resolved on the server

	
open(filename, mode='r', bufsize=-1)

	Open a file on the remote server. The arguments are the same as for
Python’s built-in file [https://docs.python.org/2.6/library/functions.html#file] (aka open [https://docs.python.org/2.6/library/functions.html#open]). A file-like
object is returned, which closely mimics the behavior of a normal
Python file object, including the ability to be used as a context
manager.

The mode indicates how the file is to be opened: 'r' for reading,
'w' for writing (truncating an existing file), 'a' for
appending, 'r+' for reading/writing, 'w+' for reading/writing
(truncating an existing file), 'a+' for reading/appending. The
Python 'b' flag is ignored, since SSH treats all files as binary.
The 'U' flag is supported in a compatible way.

Since 1.5.2, an 'x' flag indicates that the operation should only
succeed if the file was created and did not previously exist. This has
no direct mapping to Python’s file flags, but is commonly known as the
O_EXCL flag in posix.

The file will be buffered in standard Python style by default, but
can be altered with the bufsize parameter. 0 turns off
buffering, 1 uses line buffering, and any number greater than 1
(>1) uses that specific buffer size.

	Parameters:	
	filename (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the file to open

	mode (str [https://docs.python.org/2.6/library/functions.html#str]) – mode (Python-style) to open in

	bufsize (int [https://docs.python.org/2.6/library/functions.html#int]) – desired buffering (-1 = default buffer size)

	Returns:	an SFTPFile object representing the open file

	Raises:	IOError – if the file could not be opened.

	
put(localpath, remotepath, callback=None, confirm=True)

	Copy a local file (localpath) to the SFTP server as remotepath.
Any exception raised by operations will be passed through. This
method is primarily provided as a convenience.

The SFTP operations use pipelining for speed.

	Parameters:	
	localpath (str [https://docs.python.org/2.6/library/functions.html#str]) – the local file to copy

	remotepath (str [https://docs.python.org/2.6/library/functions.html#str]) – the destination path on the SFTP server. Note
that the filename should be included. Only specifying a directory
may result in an error.

	callback (callable [https://docs.python.org/2.6/library/functions.html#callable]) – optional callback function (form: func(int, int)) that accepts
the bytes transferred so far and the total bytes to be transferred

	confirm (bool [https://docs.python.org/2.6/library/functions.html#bool]) – whether to do a stat() on the file afterwards to confirm the file
size

	Returns:	an SFTPAttributes object containing attributes about the given file

New in version 1.4.

Changed in version 1.7.4: callback and rich attribute return value added.

Changed in version 1.7.7: confirm param added.

	
putfo(fl, remotepath, file_size=0, callback=None, confirm=True)

	Copy the contents of an open file object (fl) to the SFTP server as
remotepath. Any exception raised by operations will be passed
through.

The SFTP operations use pipelining for speed.

	Parameters:	
	fl – opened file or file-like object to copy

	remotepath (str [https://docs.python.org/2.6/library/functions.html#str]) – the destination path on the SFTP server

	file_size (int [https://docs.python.org/2.6/library/functions.html#int]) – optional size parameter passed to callback. If none is specified,
size defaults to 0

	callback (callable [https://docs.python.org/2.6/library/functions.html#callable]) – optional callback function (form: func(int, int)) that accepts
the bytes transferred so far and the total bytes to be transferred
(since 1.7.4)

	confirm (bool [https://docs.python.org/2.6/library/functions.html#bool]) – whether to do a stat() on the file afterwards to confirm the file
size (since 1.7.7)

	Returns:	an SFTPAttributes object containing attributes about the given
file.

New in version 1.10.

	
readlink(path)

	Return the target of a symbolic link (shortcut). You can use
symlink to create these. The result may be either an absolute or
relative pathname.

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – path of the symbolic link file

	Returns:	target path, as a str [https://docs.python.org/2.6/library/functions.html#str]

	
remove(path)

	Remove the file at the given path. This only works on files; for
removing folders (directories), use rmdir.

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – path (absolute or relative) of the file to remove

	Raises:	IOError – if the path refers to a folder (directory)

	
rename(oldpath, newpath)

	Rename a file or folder from oldpath to newpath.

	Parameters:	
	oldpath (str [https://docs.python.org/2.6/library/functions.html#str]) – existing name of the file or folder

	newpath (str [https://docs.python.org/2.6/library/functions.html#str]) – new name for the file or folder

	Raises:	IOError – if newpath is a folder, or something else goes
wrong

	
rmdir(path)

	Remove the folder named path.

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the folder to remove

	
stat(path)

	Retrieve information about a file on the remote system. The return
value is an object whose attributes correspond to the attributes of
Python’s stat structure as returned by os.stat, except that it
contains fewer fields. An SFTP server may return as much or as little
info as it wants, so the results may vary from server to server.

Unlike a Python stat [https://docs.python.org/2.6/library/stat.html#module-stat] object, the result may not be accessed as
a tuple. This is mostly due to the author’s slack factor.

The fields supported are: st_mode, st_size, st_uid,
st_gid, st_atime, and st_mtime.

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – the filename to stat

	Returns:	an SFTPAttributes object containing attributes about the given
file

	
symlink(source, dest)

	Create a symbolic link (shortcut) of the source path at
destination.

	Parameters:	
	source (str [https://docs.python.org/2.6/library/functions.html#str]) – path of the original file

	dest (str [https://docs.python.org/2.6/library/functions.html#str]) – path of the newly created symlink

	
truncate(path, size)

	Change the size of the file specified by path. This usually
extends or shrinks the size of the file, just like the truncate [https://docs.python.org/2.6/library/stdtypes.html#file.truncate]
method on Python file objects.

	Parameters:	
	path (str [https://docs.python.org/2.6/library/functions.html#str]) – path of the file to modify

	size (int or long) – the new size of the file

	
unlink(path)

	Remove the file at the given path. This only works on files; for
removing folders (directories), use rmdir.

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – path (absolute or relative) of the file to remove

	Raises:	IOError – if the path refers to a folder (directory)

	
utime(path, times)

	Set the access and modified times of the file specified by path. If
times is None, then the file’s access and modified times are set
to the current time. Otherwise, times must be a 2-tuple of numbers,
of the form (atime, mtime), which is used to set the access and
modified times, respectively. This bizarre API is mimicked from Python
for the sake of consistency – I apologize.

	Parameters:	
	path (str [https://docs.python.org/2.6/library/functions.html#str]) – path of the file to modify

	times (tuple [https://docs.python.org/2.6/library/functions.html#tuple]) – None or a tuple of (access time, modified time) in standard
internet epoch time (seconds since 01 January 1970 GMT)

Server-mode SFTP support.

	
class paramiko.sftp_server.SFTPServer(channel, name, server, sftp_si=<class 'paramiko.sftp_si.SFTPServerInterface'>, *largs, **kwargs)

	Server-side SFTP subsystem support. Since this is a SubsystemHandler,
it can be (and is meant to be) set as the handler for "sftp" requests.
Use Transport.set_subsystem_handler to activate this class.

	
__init__(channel, name, server, sftp_si=<class 'paramiko.sftp_si.SFTPServerInterface'>, *largs, **kwargs)

	The constructor for SFTPServer is meant to be called from within the
Transport as a subsystem handler. server and any additional
parameters or keyword parameters are passed from the original call to
Transport.set_subsystem_handler.

	Parameters:	
	channel (Channel) – channel passed from the Transport.

	name (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the requested subsystem.

	server (ServerInterface) – the server object associated with this channel and subsystem

	sftp_si (class) – a subclass of SFTPServerInterface to use for handling individual
requests.

	
static convert_errno(e)

	Convert an errno value (as from an OSError or IOError) into a
standard SFTP result code. This is a convenience function for trapping
exceptions in server code and returning an appropriate result.

	Parameters:	e (int [https://docs.python.org/2.6/library/functions.html#int]) – an errno code, as from OSError.errno.

	Returns:	an int [https://docs.python.org/2.6/library/functions.html#int] SFTP error code like SFTP_NO_SUCH_FILE.

	
static set_file_attr(filename, attr)

	Change a file’s attributes on the local filesystem. The contents of
attr are used to change the permissions, owner, group ownership,
and/or modification & access time of the file, depending on which
attributes are present in attr.

This is meant to be a handy helper function for translating SFTP file
requests into local file operations.

	Parameters:	
	filename (str [https://docs.python.org/2.6/library/functions.html#str]) – name of the file to alter (should usually be an absolute path).

	attr (SFTPAttributes) – attributes to change.

	
class paramiko.sftp_attr.SFTPAttributes

	Representation of the attributes of a file (or proxied file) for SFTP in
client or server mode. It attemps to mirror the object returned by
os.stat [https://docs.python.org/2.6/library/os.html#os.stat] as closely as possible, so it may have the following fields,
with the same meanings as those returned by an os.stat [https://docs.python.org/2.6/library/os.html#os.stat] object:

	st_size

	st_uid

	st_gid

	st_mode

	st_atime

	st_mtime

Because SFTP allows flags to have other arbitrary named attributes, these
are stored in a dict named attr. Occasionally, the filename is also
stored, in filename.

	
__init__()

	Create a new (empty) SFTPAttributes object. All fields will be empty.

	
__str__()

	create a unix-style long description of the file (like ls -l)

	
__weakref__

	list of weak references to the object (if defined)

	
classmethod from_stat(obj, filename=None)

	Create an SFTPAttributes object from an existing stat object (an
object returned by os.stat [https://docs.python.org/2.6/library/os.html#os.stat]).

	Parameters:	
	obj (object [https://docs.python.org/2.6/library/functions.html#object]) – an object returned by os.stat [https://docs.python.org/2.6/library/os.html#os.stat] (or equivalent).

	filename (str [https://docs.python.org/2.6/library/functions.html#str]) – the filename associated with this file.

	Returns:	new SFTPAttributes object with the same attribute fields.

SFTP file object

	
class paramiko.sftp_file.SFTPFile(sftp, handle, mode='r', bufsize=-1)

	Bases: paramiko.file.BufferedFile

Proxy object for a file on the remote server, in client mode SFTP.

Instances of this class may be used as context managers in the same way
that built-in Python file objects are.

	
check(hash_algorithm, offset=0, length=0, block_size=0)

	Ask the server for a hash of a section of this file. This can be used
to verify a successful upload or download, or for various rsync-like
operations.

The file is hashed from offset, for length bytes. If length
is 0, the remainder of the file is hashed. Thus, if both offset
and length are zero, the entire file is hashed.

Normally, block_size will be 0 (the default), and this method will
return a byte string representing the requested hash (for example, a
string of length 16 for MD5, or 20 for SHA-1). If a non-zero
block_size is given, each chunk of the file (from offset to
offset + length) of block_size bytes is computed as a separate
hash. The hash results are all concatenated and returned as a single
string.

For example, check('sha1', 0, 1024, 512) will return a string of
length 40. The first 20 bytes will be the SHA-1 of the first 512 bytes
of the file, and the last 20 bytes will be the SHA-1 of the next 512
bytes.

	Parameters:	
	hash_algorithm (str [https://docs.python.org/2.6/library/functions.html#str]) – the name of the hash algorithm to use (normally "sha1" or
"md5")

	offset (int or long) – offset into the file to begin hashing (0 means to start from the
beginning)

	length (int or long) – number of bytes to hash (0 means continue to the end of the file)

	block_size (int [https://docs.python.org/2.6/library/functions.html#int]) – number of bytes to hash per result (must not be less than 256; 0
means to compute only one hash of the entire segment)

	Returns:	str [https://docs.python.org/2.6/library/functions.html#str] of bytes representing the hash of each block, concatenated
together

	Raises:	IOError – if the server doesn’t support the “check-file”
extension, or possibly doesn’t support the hash algorithm
requested

Note

Many (most?) servers don’t support this extension yet.

New in version 1.4.

	
chmod(mode)

	Change the mode (permissions) of this file. The permissions are
unix-style and identical to those used by Python’s os.chmod [https://docs.python.org/2.6/library/os.html#os.chmod]
function.

	Parameters:	mode (int [https://docs.python.org/2.6/library/functions.html#int]) – new permissions

	
chown(uid, gid)

	Change the owner (uid) and group (gid) of this file. As with
Python’s os.chown [https://docs.python.org/2.6/library/os.html#os.chown] function, you must pass both arguments, so if you
only want to change one, use stat first to retrieve the current
owner and group.

	Parameters:	
	uid (int [https://docs.python.org/2.6/library/functions.html#int]) – new owner’s uid

	gid (int [https://docs.python.org/2.6/library/functions.html#int]) – new group id

	
close()

	Close the file.

	
flush()

	Write out any data in the write buffer. This may do nothing if write
buffering is not turned on.

	
gettimeout()

	Returns the timeout in seconds (as a float [https://docs.python.org/2.6/library/functions.html#float]) associated with the
socket or ssh Channel used for this file.

See also

Channel.gettimeout

	
next()

	Returns the next line from the input, or raises
StopIteration [https://docs.python.org/2.6/library/exceptions.html#exceptions.StopIteration] when EOF is hit. Unlike Python file
objects, it’s okay to mix calls to next and readline.

	Raises:	StopIteration – when the end of the file is reached.

	Returns:	a line (str [https://docs.python.org/2.6/library/functions.html#str]) read from the file.

	
prefetch(file_size=None)

	Pre-fetch the remaining contents of this file in anticipation of future
read calls. If reading the entire file, pre-fetching can
dramatically improve the download speed by avoiding roundtrip latency.
The file’s contents are incrementally buffered in a background thread.

The prefetched data is stored in a buffer until read via the read
method. Once data has been read, it’s removed from the buffer. The
data may be read in a random order (using seek); chunks of the
buffer that haven’t been read will continue to be buffered.

	Parameters:	file_size (int [https://docs.python.org/2.6/library/functions.html#int]) – When this is None (the default), this method calls stat to
determine the remote file size. In some situations, doing so can
cause exceptions or hangs (see #562 [https://github.com/paramiko/paramiko/pull/562]); as a
workaround, one may call stat explicitly and pass its value in
via this parameter.

New in version 1.5.1.

Changed in version 1.16.0: The file_size parameter was added (with no default value).

Changed in version 1.16.1: The file_size parameter was made optional for backwards
compatibility.

	
read(size=None)

	Read at most size bytes from the file (less if we hit the end of the
file first). If the size argument is negative or omitted, read all
the remaining data in the file.

Note

'b' mode flag is ignored (self.FLAG_BINARY in
self._flags), because SSH treats all files as binary, since we
have no idea what encoding the file is in, or even if the file is
text data.

	Parameters:	size (int [https://docs.python.org/2.6/library/functions.html#int]) – maximum number of bytes to read

	Returns:	data read from the file (as bytes), or an empty string if EOF was
encountered immediately

	
readable()

	Check if the file can be read from.

	Returns:	True [https://docs.python.org/2.6/library/constants.html#True] if the file can be read from. If False [https://docs.python.org/2.6/library/constants.html#False], read will raise
an exception.

	
readinto(buff)

	Read up to len(buff) bytes into bytearray buff and
return the number of bytes read.

	Returns:	The number of bytes read.

	
readline(size=None)

	Read one entire line from the file. A trailing newline character is
kept in the string (but may be absent when a file ends with an
incomplete line). If the size argument is present and non-negative, it
is a maximum byte count (including the trailing newline) and an
incomplete line may be returned. An empty string is returned only when
EOF is encountered immediately.

Note

Unlike stdio’s fgets, the returned string contains null
characters ('\0') if they occurred in the input.

	Parameters:	size (int [https://docs.python.org/2.6/library/functions.html#int]) – maximum length of returned string.

	Returns:	next line of the file, or an empty string if the end of the
file has been reached.If the file was opened in binary ('b') mode: bytes are returned
Else: the encoding of the file is assumed to be UTF-8 and character
strings (str [https://docs.python.org/2.6/library/functions.html#str]) are returned

	
readlines(sizehint=None)

	Read all remaining lines using readline and return them as a list.
If the optional sizehint argument is present, instead of reading up
to EOF, whole lines totalling approximately sizehint bytes (possibly
after rounding up to an internal buffer size) are read.

	Parameters:	sizehint (int [https://docs.python.org/2.6/library/functions.html#int]) – desired maximum number of bytes to read.

	Returns:	list [https://docs.python.org/2.6/library/functions.html#list] of lines read from the file.

	
readv(chunks)

	Read a set of blocks from the file by (offset, length). This is more
efficient than doing a series of seek and read calls, since the
prefetch machinery is used to retrieve all the requested blocks at
once.

	Parameters:	chunks (list(tuple(long, int))) – a list of (offset, length) tuples indicating which sections of the
file to read

	Returns:	a list of blocks read, in the same order as in chunks

New in version 1.5.4.

	
seekable()

	Check if the file supports random access.

	Returns:	True [https://docs.python.org/2.6/library/constants.html#True] if the file supports random access. If False [https://docs.python.org/2.6/library/constants.html#False],
seek() will raise an exception

	
set_pipelined(pipelined=True)

	Turn on/off the pipelining of write operations to this file. When
pipelining is on, paramiko won’t wait for the server response after
each write operation. Instead, they’re collected as they come in. At
the first non-write operation (including close), all remaining
server responses are collected. This means that if there was an error
with one of your later writes, an exception might be thrown from within
close instead of write.

By default, files are not pipelined.

	Parameters:	pipelined (bool [https://docs.python.org/2.6/library/functions.html#bool]) – True if pipelining should be turned on for this file; False
otherwise

New in version 1.5.

	
setblocking(blocking)

	Set blocking or non-blocking mode on the underiying socket or ssh
Channel.

	Parameters:	blocking (int [https://docs.python.org/2.6/library/functions.html#int]) – 0 to set non-blocking mode; non-0 to set blocking mode.

See also

Channel.setblocking

	
settimeout(timeout)

	Set a timeout on read/write operations on the underlying socket or
ssh Channel.

	Parameters:	timeout (float [https://docs.python.org/2.6/library/functions.html#float]) – seconds to wait for a pending read/write operation before raising
socket.timeout, or None for no timeout

See also

Channel.settimeout

	
stat()

	Retrieve information about this file from the remote system. This is
exactly like SFTPClient.stat, except that it operates on an
already-open file.

	Returns:	an SFTPAttributes object containing attributes about this file.

	
tell()

	Return the file’s current position. This may not be accurate or
useful if the underlying file doesn’t support random access, or was
opened in append mode.

	Returns:	file position (number [https://docs.python.org/2.6/library/functions.html#int] of bytes).

	
truncate(size)

	Change the size of this file. This usually extends
or shrinks the size of the file, just like the truncate() method on
Python file objects.

	Parameters:	size (int or long) – the new size of the file

	
utime(times)

	Set the access and modified times of this file. If
times is None, then the file’s access and modified times are set
to the current time. Otherwise, times must be a 2-tuple of numbers,
of the form (atime, mtime), which is used to set the access and
modified times, respectively. This bizarre API is mimicked from Python
for the sake of consistency – I apologize.

	Parameters:	times (tuple [https://docs.python.org/2.6/library/functions.html#tuple]) – None or a tuple of (access time, modified time) in standard
internet epoch time (seconds since 01 January 1970 GMT)

	
writable()

	Check if the file can be written to.

	Returns:	True [https://docs.python.org/2.6/library/constants.html#True] if the file can be written to. If False [https://docs.python.org/2.6/library/constants.html#False], write will
raise an exception.

	
write(data)

	Write data to the file. If write buffering is on (bufsize was
specified and non-zero), some or all of the data may not actually be
written yet. (Use flush or close to force buffered data to be
written out.)

	Parameters:	data (str/bytes) – data to write

	
writelines(sequence)

	Write a sequence of strings to the file. The sequence can be any
iterable object producing strings, typically a list of strings. (The
name is intended to match readlines; writelines does not add line
separators.)

	Parameters:	sequence (iterable) – an iterable sequence of strings.

	
xreadlines()

	Identical to iter(f). This is a deprecated file interface that
predates Python iterator support.

Abstraction of an SFTP file handle (for server mode).

	
class paramiko.sftp_handle.SFTPHandle(flags=0)

	Abstract object representing a handle to an open file (or folder) in an
SFTP server implementation. Each handle has a string representation used
by the client to refer to the underlying file.

Server implementations can (and should) subclass SFTPHandle to implement
features of a file handle, like stat or chattr.

Instances of this class may be used as context managers.

	
__init__(flags=0)

	Create a new file handle representing a local file being served over
SFTP. If flags is passed in, it’s used to determine if the file
is open in append mode.

	Parameters:	flags (int [https://docs.python.org/2.6/library/functions.html#int]) – optional flags as passed to SFTPServerInterface.open

	
chattr(attr)

	Change the attributes of this file. The attr object will contain
only those fields provided by the client in its request, so you should
check for the presence of fields before using them.

	Parameters:	attr (SFTPAttributes) – the attributes to change on this file.

	Returns:	an int [https://docs.python.org/2.6/library/functions.html#int] error code like SFTP_OK.

	
close()

	When a client closes a file, this method is called on the handle.
Normally you would use this method to close the underlying OS level
file object(s).

The default implementation checks for attributes on self named
readfile and/or writefile, and if either or both are present,
their close() methods are called. This means that if you are
using the default implementations of read and write, this
method’s default implementation should be fine also.

	
read(offset, length)

	Read up to length bytes from this file, starting at position
offset. The offset may be a Python long, since SFTP allows it
to be 64 bits.

If the end of the file has been reached, this method may return an
empty string to signify EOF, or it may also return SFTP_EOF.

The default implementation checks for an attribute on self named
readfile, and if present, performs the read operation on the Python
file-like object found there. (This is meant as a time saver for the
common case where you are wrapping a Python file object.)

	Parameters:	
	offset (int or long) – position in the file to start reading from.

	length (int [https://docs.python.org/2.6/library/functions.html#int]) – number of bytes to attempt to read.

	Returns:	data read from the file, or an SFTP error code, as a str [https://docs.python.org/2.6/library/functions.html#str].

	
stat()

	Return an SFTPAttributes object referring to this open file, or an
error code. This is equivalent to SFTPServerInterface.stat, except
it’s called on an open file instead of a path.

	Returns:	an attributes object for the given file, or an SFTP error code
(like SFTP_PERMISSION_DENIED).

	Return type:	SFTPAttributes or error code

	
write(offset, data)

	Write data into this file at position offset. Extending the
file past its original end is expected. Unlike Python’s normal
write() methods, this method cannot do a partial write: it must
write all of data or else return an error.

The default implementation checks for an attribute on self named
writefile, and if present, performs the write operation on the
Python file-like object found there. The attribute is named
differently from readfile to make it easy to implement read-only
(or write-only) files, but if both attributes are present, they should
refer to the same file.

	Parameters:	
	offset (int or long) – position in the file to start reading from.

	data (str [https://docs.python.org/2.6/library/functions.html#str]) – data to write into the file.

	Returns:	an SFTP error code like SFTP_OK.

An interface to override for SFTP server support.

	
class paramiko.sftp_si.SFTPServerInterface(server, *largs, **kwargs)

	This class defines an interface for controlling the behavior of paramiko
when using the SFTPServer subsystem to provide an SFTP server.

Methods on this class are called from the SFTP session’s thread, so you can
block as long as necessary without affecting other sessions (even other
SFTP sessions). However, raising an exception will usually cause the SFTP
session to abruptly end, so you will usually want to catch exceptions and
return an appropriate error code.

All paths are in string form instead of unicode because not all SFTP
clients & servers obey the requirement that paths be encoded in UTF-8.

	
__init__(server, *largs, **kwargs)

	Create a new SFTPServerInterface object. This method does nothing by
default and is meant to be overridden by subclasses.

	Parameters:	server (ServerInterface) – the server object associated with this channel and SFTP subsystem

	
__weakref__

	list of weak references to the object (if defined)

	
canonicalize(path)

	Return the canonical form of a path on the server. For example,
if the server’s home folder is /home/foo, the path
"../betty" would be canonicalized to "/home/betty". Note
the obvious security issues: if you’re serving files only from a
specific folder, you probably don’t want this method to reveal path
names outside that folder.

You may find the Python methods in os.path useful, especially
os.path.normpath and os.path.realpath.

The default implementation returns os.path.normpath('/' + path).

	
chattr(path, attr)

	Change the attributes of a file. The attr object will contain
only those fields provided by the client in its request, so you
should check for the presence of fields before using them.

	Parameters:	
	path (str [https://docs.python.org/2.6/library/functions.html#str]) – requested path (relative or absolute) of the file to change.

	attr – requested attributes to change on the file (an SFTPAttributes
object)

	Returns:	an error code int [https://docs.python.org/2.6/library/functions.html#int] like SFTP_OK.

	
list_folder(path)

	Return a list of files within a given folder. The path will use
posix notation ("/" separates folder names) and may be an absolute
or relative path.

The list of files is expected to be a list of SFTPAttributes
objects, which are similar in structure to the objects returned by
os.stat. In addition, each object should have its filename
field filled in, since this is important to a directory listing and
not normally present in os.stat results. The method
SFTPAttributes.from_stat will usually do what you want.

In case of an error, you should return one of the SFTP_* error
codes, such as SFTP_PERMISSION_DENIED.

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – the requested path (relative or absolute) to be listed.

	Returns:	a list of the files in the given folder, using SFTPAttributes
objects.

Note

You should normalize the given path first (see the os.path [https://docs.python.org/2.6/library/os.path.html#module-os.path]
module) and check appropriate permissions before returning the list
of files. Be careful of malicious clients attempting to use
relative paths to escape restricted folders, if you’re doing a
direct translation from the SFTP server path to your local
filesystem.

	
lstat(path)

	Return an SFTPAttributes object for a path on the server, or an
error code. If your server supports symbolic links (also known as
“aliases”), you should not follow them – instead, you should
return data on the symlink or alias itself. (stat is the
corresponding call that follows symlinks/aliases.)

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – the requested path (relative or absolute) to fetch file statistics
for.

	Returns:	an SFTPAttributes object for the given file, or an SFTP error
code (like SFTP_PERMISSION_DENIED).

	
mkdir(path, attr)

	Create a new directory with the given attributes. The attr
object may be considered a “hint” and ignored.

The attr object will contain only those fields provided by the
client in its request, so you should use hasattr to check for
the presence of fields before using them. In some cases, the attr
object may be completely empty.

	Parameters:	
	path (str [https://docs.python.org/2.6/library/functions.html#str]) – requested path (relative or absolute) of the new folder.

	attr (SFTPAttributes) – requested attributes of the new folder.

	Returns:	an SFTP error code int [https://docs.python.org/2.6/library/functions.html#int] like SFTP_OK.

	
open(path, flags, attr)

	Open a file on the server and create a handle for future operations
on that file. On success, a new object subclassed from SFTPHandle
should be returned. This handle will be used for future operations
on the file (read, write, etc). On failure, an error code such as
SFTP_PERMISSION_DENIED should be returned.

flags contains the requested mode for opening (read-only,
write-append, etc) as a bitset of flags from the os module:

	os.O_RDONLY

	os.O_WRONLY

	os.O_RDWR

	os.O_APPEND

	os.O_CREAT

	os.O_TRUNC

	os.O_EXCL

(One of os.O_RDONLY, os.O_WRONLY, or os.O_RDWR will always
be set.)

The attr object contains requested attributes of the file if it
has to be created. Some or all attribute fields may be missing if
the client didn’t specify them.

Note

The SFTP protocol defines all files to be in “binary” mode.
There is no equivalent to Python’s “text” mode.

	Parameters:	
	path (str [https://docs.python.org/2.6/library/functions.html#str]) – the requested path (relative or absolute) of the file to be opened.

	flags (int [https://docs.python.org/2.6/library/functions.html#int]) – flags or’d together from the os module indicating the requested
mode for opening the file.

	attr (SFTPAttributes) – requested attributes of the file if it is newly created.

	Returns:	a new SFTPHandle or error code.

	
readlink(path)

	Return the target of a symbolic link (or shortcut) on the server.
If the specified path doesn’t refer to a symbolic link, an error
should be returned.

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – path (relative or absolute) of the symbolic link.

	Returns:	the target str [https://docs.python.org/2.6/library/functions.html#str] path of the symbolic link, or an error code like
SFTP_NO_SUCH_FILE.

	
remove(path)

	Delete a file, if possible.

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – the requested path (relative or absolute) of the file to delete.

	Returns:	an SFTP error code int [https://docs.python.org/2.6/library/functions.html#int] like SFTP_OK.

	
rename(oldpath, newpath)

	Rename (or move) a file. The SFTP specification implies that this
method can be used to move an existing file into a different folder,
and since there’s no other (easy) way to move files via SFTP, it’s
probably a good idea to implement “move” in this method too, even for
files that cross disk partition boundaries, if at all possible.

Note

You should return an error if a file with the same name as
newpath already exists. (The rename operation should be
non-desctructive.)

	Parameters:	
	oldpath (str [https://docs.python.org/2.6/library/functions.html#str]) – the requested path (relative or absolute) of the existing file.

	newpath (str [https://docs.python.org/2.6/library/functions.html#str]) – the requested new path of the file.

	Returns:	an SFTP error code int [https://docs.python.org/2.6/library/functions.html#int] like SFTP_OK.

	
rmdir(path)

	Remove a directory if it exists. The path should refer to an
existing, empty folder – otherwise this method should return an
error.

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – requested path (relative or absolute) of the folder to remove.

	Returns:	an SFTP error code int [https://docs.python.org/2.6/library/functions.html#int] like SFTP_OK.

	
session_ended()

	The SFTP server session has just ended, either cleanly or via an
exception. This method is meant to be overridden to perform any
necessary cleanup before this SFTPServerInterface object is
destroyed.

	
session_started()

	The SFTP server session has just started. This method is meant to be
overridden to perform any necessary setup before handling callbacks
from SFTP operations.

	
stat(path)

	Return an SFTPAttributes object for a path on the server, or an
error code. If your server supports symbolic links (also known as
“aliases”), you should follow them. (lstat is the corresponding
call that doesn’t follow symlinks/aliases.)

	Parameters:	path (str [https://docs.python.org/2.6/library/functions.html#str]) – the requested path (relative or absolute) to fetch file statistics
for.

	Returns:	an SFTPAttributes object for the given file, or an SFTP error
code (like SFTP_PERMISSION_DENIED).

	
symlink(target_path, path)

	Create a symbolic link on the server, as new pathname path,
with target_path as the target of the link.

	Parameters:	
	target_path (str [https://docs.python.org/2.6/library/functions.html#str]) – path (relative or absolute) of the target for this new symbolic
link.

	path (str [https://docs.python.org/2.6/library/functions.html#str]) – path (relative or absolute) of the symbolic link to create.

	Returns:	an error code int [https://docs.python.org/2.6/library/functions.html#int] like SFTP_OK.

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

Buffered pipes

Attempt to generalize the “feeder” part of a Channel: an object which can be
read from and closed, but is reading from a buffer fed by another thread. The
read operations are blocking and can have a timeout set.

	
class paramiko.buffered_pipe.BufferedPipe

	A buffer that obeys normal read (with timeout) & close semantics for a
file or socket, but is fed data from another thread. This is used by
Channel.

	
__len__()

	Return the number of bytes buffered.

	Returns:	number (int [https://docs.python.org/2.6/library/functions.html#int]) of bytes buffered

	
__weakref__

	list of weak references to the object (if defined)

	
close()

	Close this pipe object. Future calls to read after the buffer
has been emptied will return immediately with an empty string.

	
empty()

	Clear out the buffer and return all data that was in it.

	Returns:	any data that was in the buffer prior to clearing it out, as a
str [https://docs.python.org/2.6/library/functions.html#str]

	
feed(data)

	Feed new data into this pipe. This method is assumed to be called
from a separate thread, so synchronization is done.

	Parameters:	data – the data to add, as a str [https://docs.python.org/2.6/library/functions.html#str] or bytes

	
read(nbytes, timeout=None)

	Read data from the pipe. The return value is a string representing
the data received. The maximum amount of data to be received at once
is specified by nbytes. If a string of length zero is returned,
the pipe has been closed.

The optional timeout argument can be a nonnegative float expressing
seconds, or None for no timeout. If a float is given, a
PipeTimeout will be raised if the timeout period value has elapsed
before any data arrives.

	Parameters:	
	nbytes (int [https://docs.python.org/2.6/library/functions.html#int]) – maximum number of bytes to read

	timeout (float [https://docs.python.org/2.6/library/functions.html#float]) – maximum seconds to wait (or None, the default, to wait forever)

	Returns:	the read data, as a bytes

	Raises:	PipeTimeout – if a timeout was specified and no data was ready before that
timeout

	
read_ready()

	Returns true if data is buffered and ready to be read from this
feeder. A False result does not mean that the feeder has closed;
it means you may need to wait before more data arrives.

	Returns:	True if a read call would immediately return at least one
byte; False otherwise.

	
set_event(event)

	Set an event on this buffer. When data is ready to be read (or the
buffer has been closed), the event will be set. When no data is
ready, the event will be cleared.

	Parameters:	event (threading.Event [https://docs.python.org/2.6/library/threading.html#threading.Event]) – the event to set/clear

	
exception paramiko.buffered_pipe.PipeTimeout

	Indicates that a timeout was reached on a read from a BufferedPipe.

	
__weakref__

	list of weak references to the object (if defined)

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

Buffered files

	
class paramiko.file.BufferedFile

	Reusable base class to implement Python-style file buffering around a
simpler stream.

	
__iter__()

	Returns an iterator that can be used to iterate over the lines in this
file. This iterator happens to return the file itself, since a file is
its own iterator.

	Raises:	ValueError – if the file is closed.

	
close()

	Close the file. Future read and write operations will fail.

	
flush()

	Write out any data in the write buffer. This may do nothing if write
buffering is not turned on.

	
next()

	Returns the next line from the input, or raises
StopIteration [https://docs.python.org/2.6/library/exceptions.html#exceptions.StopIteration] when EOF is hit. Unlike Python file
objects, it’s okay to mix calls to next and readline.

	Raises:	StopIteration – when the end of the file is reached.

	Returns:	a line (str [https://docs.python.org/2.6/library/functions.html#str]) read from the file.

	
read(size=None)

	Read at most size bytes from the file (less if we hit the end of the
file first). If the size argument is negative or omitted, read all
the remaining data in the file.

Note

'b' mode flag is ignored (self.FLAG_BINARY in
self._flags), because SSH treats all files as binary, since we
have no idea what encoding the file is in, or even if the file is
text data.

	Parameters:	size (int [https://docs.python.org/2.6/library/functions.html#int]) – maximum number of bytes to read

	Returns:	data read from the file (as bytes), or an empty string if EOF was
encountered immediately

	
readable()

	Check if the file can be read from.

	Returns:	True [https://docs.python.org/2.6/library/constants.html#True] if the file can be read from. If False [https://docs.python.org/2.6/library/constants.html#False], read will raise
an exception.

	
readinto(buff)

	Read up to len(buff) bytes into bytearray buff and
return the number of bytes read.

	Returns:	The number of bytes read.

	
readline(size=None)

	Read one entire line from the file. A trailing newline character is
kept in the string (but may be absent when a file ends with an
incomplete line). If the size argument is present and non-negative, it
is a maximum byte count (including the trailing newline) and an
incomplete line may be returned. An empty string is returned only when
EOF is encountered immediately.

Note

Unlike stdio’s fgets, the returned string contains null
characters ('\0') if they occurred in the input.

	Parameters:	size (int [https://docs.python.org/2.6/library/functions.html#int]) – maximum length of returned string.

	Returns:	next line of the file, or an empty string if the end of the
file has been reached.If the file was opened in binary ('b') mode: bytes are returned
Else: the encoding of the file is assumed to be UTF-8 and character
strings (str [https://docs.python.org/2.6/library/functions.html#str]) are returned

	
readlines(sizehint=None)

	Read all remaining lines using readline and return them as a list.
If the optional sizehint argument is present, instead of reading up
to EOF, whole lines totalling approximately sizehint bytes (possibly
after rounding up to an internal buffer size) are read.

	Parameters:	sizehint (int [https://docs.python.org/2.6/library/functions.html#int]) – desired maximum number of bytes to read.

	Returns:	list [https://docs.python.org/2.6/library/functions.html#list] of lines read from the file.

	
seek(offset, whence=0)

	Set the file’s current position, like stdio’s fseek. Not all file
objects support seeking.

Note

If a file is opened in append mode ('a' or 'a+'), any seek
operations will be undone at the next write (as the file position
will move back to the end of the file).

	Parameters:	
	offset (int [https://docs.python.org/2.6/library/functions.html#int]) – position to move to within the file, relative to whence.

	whence (int [https://docs.python.org/2.6/library/functions.html#int]) – type of movement: 0 = absolute; 1 = relative to the current
position; 2 = relative to the end of the file.

	Raises:	IOError – if the file doesn’t support random access.

	
seekable()

	Check if the file supports random access.

	Returns:	True [https://docs.python.org/2.6/library/constants.html#True] if the file supports random access. If False [https://docs.python.org/2.6/library/constants.html#False], seek will
raise an exception.

	
tell()

	Return the file’s current position. This may not be accurate or
useful if the underlying file doesn’t support random access, or was
opened in append mode.

	Returns:	file position (number [https://docs.python.org/2.6/library/functions.html#int] of bytes).

	
writable()

	Check if the file can be written to.

	Returns:	True [https://docs.python.org/2.6/library/constants.html#True] if the file can be written to. If False [https://docs.python.org/2.6/library/constants.html#False], write will
raise an exception.

	
write(data)

	Write data to the file. If write buffering is on (bufsize was
specified and non-zero), some or all of the data may not actually be
written yet. (Use flush or close to force buffered data to be
written out.)

	Parameters:	data (str/bytes) – data to write

	
writelines(sequence)

	Write a sequence of strings to the file. The sequence can be any
iterable object producing strings, typically a list of strings. (The
name is intended to match readlines; writelines does not add line
separators.)

	Parameters:	sequence (iterable) – an iterable sequence of strings.

	
xreadlines()

	Identical to iter(f). This is a deprecated file interface that
predates Python iterator support.

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Paramiko documentation »

Cross-platform pipe implementations

Abstraction of a one-way pipe where the read end can be used in
select.select [https://docs.python.org/2.6/library/select.html#select.select]. Normally this is trivial, but Windows makes it nearly
impossible.

The pipe acts like an Event, which can be set or cleared. When set, the pipe
will trigger as readable in select [https://docs.python.org/2.6/library/select.html#select.select].

	
class paramiko.pipe.WindowsPipe

	On Windows, only an OS-level “WinSock” may be used in select(), but reads
and writes must be to the actual socket object.

	
__weakref__

	list of weak references to the object (if defined)

	
paramiko.pipe.make_or_pipe(pipe)

	wraps a pipe into two pipe-like objects which are “or”d together to
affect the real pipe. if either returned pipe is set, the wrapped pipe
is set. when both are cleared, the wrapped pipe is cleared.

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Paramiko documentation »

Exceptions

	
exception paramiko.ssh_exception.AuthenticationException

	Exception raised when authentication failed for some reason. It may be
possible to retry with different credentials. (Other classes specify more
specific reasons.)

New in version 1.6.

	
exception paramiko.ssh_exception.BadAuthenticationType(explanation, types)

	Exception raised when an authentication type (like password) is used, but
the server isn’t allowing that type. (It may only allow public-key, for
example.)

	Variables:	allowed_types (list [https://docs.python.org/2.6/library/functions.html#list]) – list of allowed authentication types provided by the server (possible
values are: "none", "password", and "publickey").

New in version 1.1.

	
exception paramiko.ssh_exception.BadHostKeyException(hostname, got_key, expected_key)

	The host key given by the SSH server did not match what we were expecting.

	Variables:	
	hostname (str [https://docs.python.org/2.6/library/functions.html#str]) – the hostname of the SSH server

	got_key (PKey) – the host key presented by the server

	expected_key (PKey) – the host key expected

New in version 1.6.

	
exception paramiko.ssh_exception.ChannelException(code, text)

	Exception raised when an attempt to open a new Channel fails.

	Variables:	code [https://docs.python.org/2.6/library/code.html#module-code] (int [https://docs.python.org/2.6/library/functions.html#int]) – the error code returned by the server

New in version 1.6.

	
exception paramiko.ssh_exception.NoValidConnectionsError(errors)

	Multiple connection attempts were made and no families succeeded.

This exception class wraps multiple “real” underlying connection errors,
all of which represent failed connection attempts. Because these errors are
not guaranteed to all be of the same error type (i.e. different errno,
socket.error [https://docs.python.org/2.6/library/socket.html#socket.error] subclass, message, etc) we expose a single unified error
message and a None errno so that instances of this class match most
normal handling of socket.error [https://docs.python.org/2.6/library/socket.html#socket.error] objects.

To see the wrapped exception objects, access the errors attribute.
errors is a dict whose keys are address tuples (e.g. ('127.0.0.1',
22)) and whose values are the exception encountered trying to connect to
that address.

It is implied/assumed that all the errors given to a single instance of
this class are from connecting to the same hostname + port (and thus that
the differences are in the resolution of the hostname - e.g. IPv4 vs v6).

New in version 1.16.

	
__init__(errors)

	

	Parameters:	errors (dict [https://docs.python.org/2.6/library/stdtypes.html#dict]) – The errors dict to store, as described by class docstring.

	
exception paramiko.ssh_exception.PartialAuthentication(types)

	An internal exception thrown in the case of partial authentication.

	
exception paramiko.ssh_exception.PasswordRequiredException

	Exception raised when a password is needed to unlock a private key file.

	
exception paramiko.ssh_exception.ProxyCommandFailure(command, error)

	The “ProxyCommand” found in the .ssh/config file returned an error.

	Variables:	
	command (str [https://docs.python.org/2.6/library/functions.html#str]) – The command line that is generating this exception.

	error (str [https://docs.python.org/2.6/library/functions.html#str]) – The error captured from the proxy command output.

	
exception paramiko.ssh_exception.SSHException

	Exception raised by failures in SSH2 protocol negotiation or logic errors.

	
__weakref__

	list of weak references to the object (if defined)

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	Paramiko documentation »

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 paramiko	

 	
 	
 paramiko.agent	

 	
 	
 paramiko.buffered_pipe	

 	
 	
 paramiko.channel	

 	
 	
 paramiko.client	

 	
 	
 paramiko.config	

 	
 	
 paramiko.dsskey	

 	
 	
 paramiko.ecdsakey	

 	
 	
 paramiko.file	

 	
 	
 paramiko.hostkeys	

 	
 	
 paramiko.kex_gss	

 	
 	
 paramiko.message	

 	
 	
 paramiko.packet	

 	
 	
 paramiko.pipe	

 	
 	
 paramiko.pkey	

 	
 	
 paramiko.proxy	

 	
 	
 paramiko.rsakey	

 	
 	
 paramiko.server	

 	
 	
 paramiko.sftp	

 	
 	
 paramiko.sftp_attr	

 	
 	
 paramiko.sftp_client	

 	
 	
 paramiko.sftp_file	

 	
 	
 paramiko.sftp_handle	

 	
 	
 paramiko.sftp_server	

 	
 	
 paramiko.sftp_si	

 	
 	
 paramiko.ssh_exception	

 	
 	
 paramiko.ssh_gss	

 	
 	
 paramiko.transport	

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 Navigation

 	
 index

 	
 modules |

 	Paramiko documentation »

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	

 	__cmp__() (paramiko.pkey.PKey method)

 	__init__() (paramiko.channel.Channel method)

 	

 	(paramiko.client.SSHClient method)

 	(paramiko.config.SSHConfig method)

 	(paramiko.hostkeys.HostKeys method)

 	(paramiko.message.Message method)

 	(paramiko.pkey.PKey method)

 	(paramiko.proxy.ProxyCommand method)

 	(paramiko.server.InteractiveQuery method)

 	(paramiko.server.SubsystemHandler method)

 	(paramiko.sftp_attr.SFTPAttributes method)

 	(paramiko.sftp_client.SFTPClient method)

 	(paramiko.sftp_handle.SFTPHandle method)

 	(paramiko.sftp_server.SFTPServer method)

 	(paramiko.sftp_si.SFTPServerInterface method)

 	(paramiko.ssh_exception.NoValidConnectionsError method)

 	(paramiko.ssh_gss._SSH_GSSAPI method)

 	(paramiko.ssh_gss._SSH_GSSAuth method)

 	(paramiko.ssh_gss._SSH_SSPI method)

 	(paramiko.transport.Transport method)

 	__iter__() (paramiko.file.BufferedFile method)

 	__len__() (paramiko.buffered_pipe.BufferedPipe method)

 	__repr__() (paramiko.channel.Channel method)

 	

 	(paramiko.channel.ChannelFile method)

 	(paramiko.message.Message method)

 	(paramiko.transport.SecurityOptions method)

 	(paramiko.transport.Transport method)

 	

 	__str__() (paramiko.message.Message method)

 	

 	(paramiko.sftp_attr.SFTPAttributes method)

 	__weakref__ (paramiko.buffered_pipe.BufferedPipe attribute)

 	

 	(paramiko.buffered_pipe.PipeTimeout attribute)

 	(paramiko.client.MissingHostKeyPolicy attribute)

 	(paramiko.config.LazyFqdn attribute)

 	(paramiko.config.SSHConfig attribute)

 	(paramiko.kex_gss.KexGSSGex attribute)

 	(paramiko.kex_gss.KexGSSGroup1 attribute)

 	(paramiko.kex_gss.NullHostKey attribute)

 	(paramiko.message.Message attribute)

 	(paramiko.packet.Packetizer attribute)

 	(paramiko.pipe.WindowsPipe attribute)

 	(paramiko.pkey.PKey attribute)

 	(paramiko.server.InteractiveQuery attribute)

 	(paramiko.server.ServerInterface attribute)

 	(paramiko.sftp_attr.SFTPAttributes attribute)

 	(paramiko.sftp_si.SFTPServerInterface attribute)

 	(paramiko.ssh_exception.SSHException attribute)

 	(paramiko.ssh_gss._SSH_GSSAuth attribute)

 	_SSH_GSSAPI (class in paramiko.ssh_gss)

 	_SSH_GSSAuth (class in paramiko.ssh_gss)

 	_SSH_SSPI (class in paramiko.ssh_gss)

A

 	

 	accept() (paramiko.transport.Transport method)

 	add() (paramiko.hostkeys.HostKeys method)

 	

 	(paramiko.message.Message method)

 	add_adaptive_int() (paramiko.message.Message method)

 	add_boolean() (paramiko.message.Message method)

 	add_byte() (paramiko.message.Message method)

 	add_bytes() (paramiko.message.Message method)

 	add_int() (paramiko.message.Message method)

 	add_int64() (paramiko.message.Message method)

 	add_list() (paramiko.message.Message method)

 	add_mpint() (paramiko.message.Message method)

 	add_prompt() (paramiko.server.InteractiveQuery method)

 	add_server_key() (paramiko.transport.Transport method)

 	add_string() (paramiko.message.Message method)

 	Agent (class in paramiko.agent)

 	AgentClientProxy (class in paramiko.agent)

 	AgentKey (class in paramiko.agent)

 	

 	AgentLocalProxy (class in paramiko.agent)

 	AgentProxyThread (class in paramiko.agent)

 	AgentRemoteProxy (class in paramiko.agent)

 	AgentRequestHandler (class in paramiko.agent)

 	AgentServerProxy (class in paramiko.agent)

 	asbytes() (paramiko.message.Message method)

 	

 	(paramiko.pkey.PKey method)

 	atfork() (paramiko.transport.Transport method)

 	auth_gssapi_keyex() (paramiko.transport.Transport method)

 	auth_gssapi_with_mic() (paramiko.transport.Transport method)

 	auth_interactive() (paramiko.transport.Transport method)

 	auth_interactive_dumb() (paramiko.transport.Transport method)

 	auth_none() (paramiko.transport.Transport method)

 	auth_password() (paramiko.transport.Transport method)

 	auth_publickey() (paramiko.transport.Transport method)

 	AuthenticationException

 	AutoAddPolicy (class in paramiko.client)

B

 	

 	BadAuthenticationType

 	BadHostKeyException

 	

 	BufferedFile (class in paramiko.file)

 	BufferedPipe (class in paramiko.buffered_pipe)

C

 	

 	can_sign() (paramiko.agent.AgentKey method)

 	

 	(paramiko.pkey.PKey method)

 	cancel_port_forward() (paramiko.transport.Transport method)

 	cancel_port_forward_request() (paramiko.server.ServerInterface method)

 	canonicalize() (paramiko.sftp_si.SFTPServerInterface method)

 	Channel (class in paramiko.channel)

 	ChannelException

 	ChannelFile (class in paramiko.channel)

 	chattr() (paramiko.sftp_handle.SFTPHandle method)

 	

 	(paramiko.sftp_si.SFTPServerInterface method)

 	chdir() (paramiko.sftp_client.SFTPClient method)

 	check() (paramiko.hostkeys.HostKeys method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	check_auth_gssapi_keyex() (paramiko.server.ServerInterface method)

 	check_auth_gssapi_with_mic() (paramiko.server.ServerInterface method)

 	check_auth_interactive() (paramiko.server.ServerInterface method)

 	check_auth_interactive_response() (paramiko.server.ServerInterface method)

 	check_auth_none() (paramiko.server.ServerInterface method)

 	check_auth_password() (paramiko.server.ServerInterface method)

 	check_auth_publickey() (paramiko.server.ServerInterface method)

 	check_channel_direct_tcpip_request() (paramiko.server.ServerInterface method)

 	check_channel_env_request() (paramiko.server.ServerInterface method)

 	check_channel_exec_request() (paramiko.server.ServerInterface method)

 	check_channel_forward_agent_request() (paramiko.server.ServerInterface method)

 	check_channel_pty_request() (paramiko.server.ServerInterface method)

 	check_channel_request() (paramiko.server.ServerInterface method)

 	check_channel_shell_request() (paramiko.server.ServerInterface method)

 	check_channel_subsystem_request() (paramiko.server.ServerInterface method)

 	

 	check_channel_window_change_request() (paramiko.server.ServerInterface method)

 	check_channel_x11_request() (paramiko.server.ServerInterface method)

 	check_global_request() (paramiko.server.ServerInterface method)

 	check_port_forward_request() (paramiko.server.ServerInterface method)

 	chmod() (paramiko.sftp_client.SFTPClient method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	chown() (paramiko.sftp_client.SFTPClient method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	ciphers (paramiko.transport.SecurityOptions attribute)

 	clear() (paramiko.hostkeys.HostKeys method)

 	close() (paramiko.agent.Agent method)

 	

 	(paramiko.agent.AgentClientProxy method)

 	(paramiko.agent.AgentServerProxy method)

 	(paramiko.buffered_pipe.BufferedPipe method)

 	(paramiko.channel.Channel method)

 	(paramiko.client.SSHClient method)

 	(paramiko.file.BufferedFile method)

 	(paramiko.sftp_client.SFTPClient method)

 	(paramiko.sftp_file.SFTPFile method)

 	(paramiko.sftp_handle.SFTPHandle method)

 	(paramiko.transport.Transport method)

 	complete_handshake() (paramiko.packet.Packetizer method)

 	compression (paramiko.transport.SecurityOptions attribute)

 	connect() (paramiko.agent.AgentClientProxy method)

 	

 	(paramiko.client.SSHClient method)

 	(paramiko.transport.Transport method)

 	convert_errno() (paramiko.sftp_server.SFTPServer static method)

 	credentials_delegated (paramiko.ssh_gss._SSH_GSSAPI attribute)

 	

 	(paramiko.ssh_gss._SSH_SSPI attribute)

D

 	

 	daemon (paramiko.agent.AgentLocalProxy attribute)

 	

 	(paramiko.agent.AgentProxyThread attribute)

 	(paramiko.agent.AgentRemoteProxy attribute)

 	

 	digests (paramiko.transport.SecurityOptions attribute)

 	DSSKey (class in paramiko.dsskey)

E

 	

 	ECDSAKey (class in paramiko.ecdsakey)

 	empty() (paramiko.buffered_pipe.BufferedPipe method)

 	enable_auth_gssapi() (paramiko.server.ServerInterface method)

 	

 	exec_command() (paramiko.channel.Channel method)

 	

 	(paramiko.client.SSHClient method)

 	exit_status_ready() (paramiko.channel.Channel method)

F

 	

 	feed() (paramiko.buffered_pipe.BufferedPipe method)

 	file() (paramiko.sftp_client.SFTPClient method)

 	fileno() (paramiko.channel.Channel method)

 	finish_subsystem() (paramiko.server.SubsystemHandler method)

 	flush() (paramiko.file.BufferedFile method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	

 	from_line() (paramiko.hostkeys.HostKeyEntry class method)

 	from_private_key() (paramiko.agent.AgentKey method)

 	

 	(paramiko.pkey.PKey class method)

 	from_private_key_file() (paramiko.agent.AgentKey method)

 	

 	(paramiko.pkey.PKey class method)

 	from_stat() (paramiko.sftp_attr.SFTPAttributes class method)

 	from_transport() (paramiko.sftp_client.SFTPClient class method)

G

 	

 	generate() (paramiko.dsskey.DSSKey static method)

 	

 	(paramiko.ecdsakey.ECDSAKey static method)

 	(paramiko.rsakey.RSAKey static method)

 	get() (paramiko.sftp_client.SFTPClient method)

 	get_adaptive_int() (paramiko.message.Message method)

 	get_allowed_auths() (paramiko.server.ServerInterface method)

 	get_banner() (paramiko.transport.Transport method)

 	get_base64() (paramiko.agent.AgentKey method)

 	

 	(paramiko.pkey.PKey method)

 	get_binary() (paramiko.message.Message method)

 	get_bits() (paramiko.agent.AgentKey method)

 	

 	(paramiko.pkey.PKey method)

 	get_boolean() (paramiko.message.Message method)

 	get_byte() (paramiko.message.Message method)

 	get_bytes() (paramiko.message.Message method)

 	get_channel() (paramiko.sftp_client.SFTPClient method)

 	get_connection() (paramiko.agent.AgentLocalProxy method)

 	get_env() (paramiko.agent.AgentServerProxy method)

 	get_exception() (paramiko.transport.Transport method)

 	get_fingerprint() (paramiko.agent.AgentKey method)

 	

 	(paramiko.pkey.PKey method)

 	get_hexdump() (paramiko.transport.Transport method)

 	get_host_keys() (paramiko.client.SSHClient method)

 	get_hostnames() (paramiko.config.SSHConfig method)

 	get_id() (paramiko.channel.Channel method)

 	get_int() (paramiko.message.Message method)

 	get_int64() (paramiko.message.Message method)

 	

 	get_keys() (paramiko.agent.Agent method)

 	

 	(paramiko.agent.AgentServerProxy method)

 	get_list() (paramiko.message.Message method)

 	get_log_channel() (paramiko.transport.Transport method)

 	get_mpint() (paramiko.message.Message method)

 	get_name() (paramiko.channel.Channel method)

 	

 	(paramiko.pkey.PKey method)

 	get_pty() (paramiko.channel.Channel method)

 	get_remainder() (paramiko.message.Message method)

 	get_remote_server_key() (paramiko.transport.Transport method)

 	get_security_options() (paramiko.transport.Transport method)

 	get_server() (paramiko.server.SubsystemHandler method)

 	get_server_key() (paramiko.transport.Transport method)

 	get_so_far() (paramiko.message.Message method)

 	get_string() (paramiko.message.Message method)

 	get_text() (paramiko.message.Message method)

 	get_transport() (paramiko.channel.Channel method)

 	

 	(paramiko.client.SSHClient method)

 	get_username() (paramiko.transport.Transport method)

 	getcwd() (paramiko.sftp_client.SFTPClient method)

 	getfo() (paramiko.sftp_client.SFTPClient method)

 	getpeername() (paramiko.channel.Channel method)

 	

 	(paramiko.transport.Transport method)

 	gettimeout() (paramiko.channel.Channel method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	global_request() (paramiko.transport.Transport method)

 	GSSAuth() (in module paramiko.ssh_gss)

H

 	

 	handshake_timed_out() (paramiko.packet.Packetizer method)

 	hash_host() (paramiko.hostkeys.HostKeys static method)

 	

 	HostKeyEntry (class in paramiko.hostkeys)

 	HostKeys (class in paramiko.hostkeys)

I

 	

 	ident (paramiko.agent.AgentLocalProxy attribute)

 	

 	(paramiko.agent.AgentProxyThread attribute)

 	(paramiko.agent.AgentRemoteProxy attribute)

 	InteractiveQuery (class in paramiko.server)

 	invoke_shell() (paramiko.channel.Channel method)

 	

 	(paramiko.client.SSHClient method)

 	invoke_subsystem() (paramiko.channel.Channel method)

 	

 	is_active() (paramiko.transport.Transport method)

 	is_alive() (paramiko.agent.AgentLocalProxy method)

 	

 	(paramiko.agent.AgentProxyThread method)

 	(paramiko.agent.AgentRemoteProxy method)

 	is_authenticated() (paramiko.transport.Transport method)

 	isAlive() (paramiko.agent.AgentLocalProxy method)

 	

 	(paramiko.agent.AgentProxyThread method)

 	(paramiko.agent.AgentRemoteProxy method)

J

 	

 	join() (paramiko.agent.AgentLocalProxy method)

 	

 	(paramiko.agent.AgentProxyThread method)

 	(paramiko.agent.AgentRemoteProxy method)

K

 	

 	kex (paramiko.transport.SecurityOptions attribute)

 	KexGSSGex (class in paramiko.kex_gss)

 	

 	KexGSSGroup1 (class in paramiko.kex_gss)

 	KexGSSGroup14 (class in paramiko.kex_gss)

 	key_types (paramiko.transport.SecurityOptions attribute)

L

 	

 	LazyFqdn (class in paramiko.config)

 	list_folder() (paramiko.sftp_si.SFTPServerInterface method)

 	listdir() (paramiko.sftp_client.SFTPClient method)

 	listdir_attr() (paramiko.sftp_client.SFTPClient method)

 	listdir_iter() (paramiko.sftp_client.SFTPClient method)

 	load() (paramiko.hostkeys.HostKeys method)

 	

 	load_host_keys() (paramiko.client.SSHClient method)

 	load_server_moduli() (paramiko.transport.Transport static method)

 	load_system_host_keys() (paramiko.client.SSHClient method)

 	lookup() (paramiko.config.SSHConfig method)

 	

 	(paramiko.hostkeys.HostKeys method)

 	lstat() (paramiko.sftp_client.SFTPClient method)

 	

 	(paramiko.sftp_si.SFTPServerInterface method)

M

 	

 	make_or_pipe() (in module paramiko.pipe)

 	makefile() (paramiko.channel.Channel method)

 	makefile_stderr() (paramiko.channel.Channel method)

 	Message (class in paramiko.message)

 	

 	missing_host_key() (paramiko.client.MissingHostKeyPolicy method)

 	MissingHostKeyPolicy (class in paramiko.client)

 	mkdir() (paramiko.sftp_client.SFTPClient method)

 	

 	(paramiko.sftp_si.SFTPServerInterface method)

N

 	

 	name (paramiko.agent.AgentLocalProxy attribute)

 	

 	(paramiko.agent.AgentProxyThread attribute)

 	(paramiko.agent.AgentRemoteProxy attribute)

 	need_rekey() (paramiko.packet.Packetizer method)

 	

 	next() (paramiko.file.BufferedFile method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	normalize() (paramiko.sftp_client.SFTPClient method)

 	NoValidConnectionsError

 	NullHostKey (class in paramiko.kex_gss)

O

 	

 	open() (paramiko.sftp_client.SFTPClient method)

 	

 	(paramiko.sftp_si.SFTPServerInterface method)

 	open_channel() (paramiko.transport.Transport method)

 	open_forward_agent_channel() (paramiko.transport.Transport method)

 	open_forwarded_tcpip_channel() (paramiko.transport.Transport method)

 	

 	open_only() (in module paramiko.channel)

 	open_session() (paramiko.transport.Transport method)

 	open_sftp() (paramiko.client.SSHClient method)

 	open_sftp_client() (paramiko.transport.Transport method)

 	open_x11_channel() (paramiko.transport.Transport method)

P

 	

 	Packetizer (class in paramiko.packet)

 	paramiko.agent (module)

 	paramiko.buffered_pipe (module)

 	paramiko.channel (module)

 	paramiko.client (module)

 	paramiko.config (module)

 	paramiko.dsskey (module)

 	paramiko.ecdsakey (module)

 	paramiko.file (module)

 	paramiko.hostkeys (module)

 	paramiko.kex_gss (module)

 	paramiko.message (module)

 	paramiko.packet (module)

 	paramiko.pipe (module)

 	paramiko.pkey (module)

 	paramiko.proxy (module)

 	paramiko.rsakey (module)

 	paramiko.server (module)

 	paramiko.sftp (module)

 	paramiko.sftp_attr (module)

 	

 	paramiko.sftp_client (module)

 	paramiko.sftp_file (module)

 	paramiko.sftp_handle (module)

 	paramiko.sftp_server (module)

 	paramiko.sftp_si (module)

 	paramiko.ssh_exception (module)

 	paramiko.ssh_gss (module)

 	paramiko.transport (module)

 	parse() (paramiko.config.SSHConfig method)

 	parse_next() (paramiko.kex_gss.KexGSSGex method)

 	

 	(paramiko.kex_gss.KexGSSGroup1 method)

 	PartialAuthentication

 	PasswordRequiredException

 	PipeTimeout

 	PKey (class in paramiko.pkey)

 	prefetch() (paramiko.sftp_file.SFTPFile method)

 	ProxyCommand (class in paramiko.proxy)

 	ProxyCommandFailure

 	put() (paramiko.sftp_client.SFTPClient method)

 	putfo() (paramiko.sftp_client.SFTPClient method)

R

 	

 	read() (paramiko.buffered_pipe.BufferedPipe method)

 	

 	(paramiko.file.BufferedFile method)

 	(paramiko.sftp_file.SFTPFile method)

 	(paramiko.sftp_handle.SFTPHandle method)

 	read_all() (paramiko.packet.Packetizer method)

 	read_message() (paramiko.packet.Packetizer method)

 	read_ready() (paramiko.buffered_pipe.BufferedPipe method)

 	readable() (paramiko.file.BufferedFile method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	readinto() (paramiko.file.BufferedFile method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	readline() (paramiko.file.BufferedFile method)

 	

 	(paramiko.packet.Packetizer method)

 	(paramiko.sftp_file.SFTPFile method)

 	readlines() (paramiko.file.BufferedFile method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	readlink() (paramiko.sftp_client.SFTPClient method)

 	

 	(paramiko.sftp_si.SFTPServerInterface method)

 	readv() (paramiko.sftp_file.SFTPFile method)

 	recv() (paramiko.channel.Channel method)

 	

 	(paramiko.proxy.ProxyCommand method)

 	

 	recv_exit_status() (paramiko.channel.Channel method)

 	recv_ready() (paramiko.channel.Channel method)

 	recv_stderr() (paramiko.channel.Channel method)

 	recv_stderr_ready() (paramiko.channel.Channel method)

 	RejectPolicy (class in paramiko.client)

 	remove() (paramiko.sftp_client.SFTPClient method)

 	

 	(paramiko.sftp_si.SFTPServerInterface method)

 	rename() (paramiko.sftp_client.SFTPClient method)

 	

 	(paramiko.sftp_si.SFTPServerInterface method)

 	renegotiate_keys() (paramiko.transport.Transport method)

 	request_forward_agent() (paramiko.channel.Channel method)

 	request_port_forward() (paramiko.transport.Transport method)

 	request_x11() (paramiko.channel.Channel method)

 	resize_pty() (paramiko.channel.Channel method)

 	rewind() (paramiko.message.Message method)

 	
 RFC

 	

 	RFC 4254

 	RFC 4462, [1]

 	rmdir() (paramiko.sftp_client.SFTPClient method)

 	

 	(paramiko.sftp_si.SFTPServerInterface method)

 	RSAKey (class in paramiko.rsakey)

S

 	

 	save() (paramiko.hostkeys.HostKeys method)

 	save_client_creds() (paramiko.ssh_gss._SSH_GSSAPI method)

 	

 	(paramiko.ssh_gss._SSH_SSPI method)

 	save_host_keys() (paramiko.client.SSHClient method)

 	SecurityOptions (class in paramiko.transport)

 	seek() (paramiko.file.BufferedFile method)

 	seekable() (paramiko.file.BufferedFile method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	send() (paramiko.channel.Channel method)

 	

 	(paramiko.proxy.ProxyCommand method)

 	send_exit_status() (paramiko.channel.Channel method)

 	send_ignore() (paramiko.transport.Transport method)

 	send_message() (paramiko.packet.Packetizer method)

 	send_ready() (paramiko.channel.Channel method)

 	send_stderr() (paramiko.channel.Channel method)

 	sendall() (paramiko.channel.Channel method)

 	sendall_stderr() (paramiko.channel.Channel method)

 	ServerInterface (class in paramiko.server)

 	session_ended() (paramiko.sftp_si.SFTPServerInterface method)

 	session_started() (paramiko.sftp_si.SFTPServerInterface method)

 	set_combine_stderr() (paramiko.channel.Channel method)

 	set_event() (paramiko.buffered_pipe.BufferedPipe method)

 	set_file_attr() (paramiko.sftp_server.SFTPServer static method)

 	set_gss_host() (paramiko.transport.Transport method)

 	set_hexdump() (paramiko.transport.Transport method)

 	set_inbound_cipher() (paramiko.packet.Packetizer method)

 	set_keepalive() (paramiko.packet.Packetizer method)

 	

 	(paramiko.transport.Transport method)

 	set_log() (paramiko.packet.Packetizer method)

 	set_log_channel() (paramiko.client.SSHClient method)

 	

 	(paramiko.transport.Transport method)

 	set_missing_host_key_policy() (paramiko.client.SSHClient method)

 	set_name() (paramiko.channel.Channel method)

 	set_outbound_cipher() (paramiko.packet.Packetizer method)

 	set_pipelined() (paramiko.sftp_file.SFTPFile method)

 	set_service() (paramiko.ssh_gss._SSH_GSSAuth method)

 	set_subsystem_handler() (paramiko.transport.Transport method)

 	set_username() (paramiko.ssh_gss._SSH_GSSAuth method)

 	setblocking() (paramiko.channel.Channel method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	settimeout() (paramiko.channel.Channel method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	

 	SFTP (class in paramiko.sftp_client)

 	SFTPAttributes (class in paramiko.sftp_attr)

 	SFTPClient (class in paramiko.sftp_client)

 	SFTPFile (class in paramiko.sftp_file)

 	SFTPHandle (class in paramiko.sftp_handle)

 	SFTPServer (class in paramiko.sftp_server)

 	SFTPServerInterface (class in paramiko.sftp_si)

 	shutdown() (paramiko.channel.Channel method)

 	shutdown_read() (paramiko.channel.Channel method)

 	shutdown_write() (paramiko.channel.Channel method)

 	sign_ssh_data() (paramiko.pkey.PKey method)

 	ssh_accept_sec_context() (paramiko.ssh_gss._SSH_GSSAPI method)

 	

 	(paramiko.ssh_gss._SSH_SSPI method)

 	ssh_check_mech() (paramiko.ssh_gss._SSH_GSSAuth method)

 	ssh_check_mic() (paramiko.ssh_gss._SSH_GSSAPI method)

 	

 	(paramiko.ssh_gss._SSH_SSPI method)

 	ssh_get_mic() (paramiko.ssh_gss._SSH_GSSAPI method)

 	

 	(paramiko.ssh_gss._SSH_SSPI method)

 	ssh_gss_oids() (paramiko.ssh_gss._SSH_GSSAuth method)

 	ssh_init_sec_context() (paramiko.ssh_gss._SSH_GSSAPI method)

 	

 	(paramiko.ssh_gss._SSH_SSPI method)

 	SSHClient (class in paramiko.client)

 	SSHConfig (class in paramiko.config)

 	SSHException

 	start() (paramiko.agent.AgentLocalProxy method)

 	

 	(paramiko.agent.AgentProxyThread method)

 	(paramiko.agent.AgentRemoteProxy method)

 	start_client() (paramiko.transport.Transport method)

 	start_handshake() (paramiko.packet.Packetizer method)

 	start_kex() (paramiko.kex_gss.KexGSSGex method)

 	

 	(paramiko.kex_gss.KexGSSGroup1 method)

 	start_server() (paramiko.transport.Transport method)

 	start_subsystem() (paramiko.server.SubsystemHandler method)

 	stat() (paramiko.sftp_client.SFTPClient method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	(paramiko.sftp_handle.SFTPHandle method)

 	(paramiko.sftp_si.SFTPServerInterface method)

 	SubsystemHandler (class in paramiko.server)

 	symlink() (paramiko.sftp_client.SFTPClient method)

 	

 	(paramiko.sftp_si.SFTPServerInterface method)

T

 	

 	tell() (paramiko.file.BufferedFile method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	to_line() (paramiko.hostkeys.HostKeyEntry method)

 	

 	Transport (class in paramiko.transport)

 	truncate() (paramiko.sftp_client.SFTPClient method)

 	

 	(paramiko.sftp_file.SFTPFile method)

U

 	

 	unlink() (paramiko.sftp_client.SFTPClient method)

 	use_compression() (paramiko.transport.Transport method)

 	

 	utime() (paramiko.sftp_client.SFTPClient method)

 	

 	(paramiko.sftp_file.SFTPFile method)

V

 	

 	verify_ssh_sig() (paramiko.agent.AgentKey method)

 	

 	(paramiko.pkey.PKey method)

W

 	

 	WarningPolicy (class in paramiko.client)

 	WindowsPipe (class in paramiko.pipe)

 	writable() (paramiko.file.BufferedFile method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	write() (paramiko.file.BufferedFile method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 	(paramiko.sftp_handle.SFTPHandle method)

 	

 	write_private_key() (paramiko.agent.AgentKey method)

 	

 	(paramiko.pkey.PKey method)

 	write_private_key_file() (paramiko.agent.AgentKey method)

 	

 	(paramiko.pkey.PKey method)

 	writelines() (paramiko.file.BufferedFile method)

 	

 	(paramiko.sftp_file.SFTPFile method)

X

 	

 	xreadlines() (paramiko.file.BufferedFile method)

 	

 	(paramiko.sftp_file.SFTPFile method)

 © Copyright 2018 Jeff Forcier.
 Created using Sphinx 1.4.9.

 _static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

